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Abstract

We review lambda encoded data in both untyped and typed forms. Several methods to prove confluence
are surveyed. To address the problems of Church encoding arise in dependent type, we propose a novel
type system called Selfstar, which not only enable us to type both Scott encoding and Church encoding
data, but also allow us to derive corresponding induction principle and case analysis principle.

1 Introduction

1.1 Backgrounds

Modern computer stores instructions as well as its data in the memory [42], leave the distinctions between
data and instructions conceptually. Most programming language distincts the program and other data on
which the program operate, but in LISP and its dialects, programs and data are essentially indistinguishable.
Programs as data give one ability to manipulate programs, this leads to the idea of metaprogramming . Data
as program have been less well-known, perhaps the exploition of buffer overflow [16] provides an intuitive
example, where the attacker provides a large trunk of data (including the malicious code) as input for a
program such that the malicious code get executed. The idea of data as program can be expressed more
naturally with lambda calculus, for example, the data 2 can be encoded as a lambda term to express the idea
of doing something twice. For example 2 (f, a) = f(f(a)) means the function 2 takes two arguments f, a,
where f is a function, returning the result of applying f twice to a; while 2 as data can be operated on, say
Plus (2, 1) = 3. Though this idea of data as program is familiared in functional programming language, it
has not been widely adopted to handle algebraic data type. One of the purposes of this report is to explore
the possibility of this approach.

Lambda calculus provide a syntactic way to model programming language in the sense that function
application and function construction can be expressed explicitly. For example, given a function(or program),
denoted by symbol f , the lambda expression corresponds to this function is λx.f x, while calling this function
on an argument denoted by symbol a can be expressed by the lambda expression (λx.f x) a. The only rule
of reducing a lambda expression is called beta reduction, for our example, (λx.f x) a →β f a. (This way
of understanding lambda calculus is inspired from Frege’s [18].) It seems this kind of syntactic abstraction
is quite limited, but surprisingly it is strong enough to capture many powerful computational concepts such
as recursion, which we will introduce later in this report. Due to its computational power, lambda calculus
give rise to the paradigm of functional programming.

Type is introduced to programming language with the purpose of reducing bugs. It is hard to give a
direct answer of what the meaning of type is. But we should be able to say that it provide a way to express
certain assumptions about the programs and data, so that compiler can check wether these assumptions are
met when composing them together. For example, when a programmer write a function with type int→ int,
he would expect the program to take integer as input, and no need to worry about dealing with situation
that giving a string as an input.

In functional programming languages like Haskell, Ocaml, programmer can be implicit about these kind of
type assumption, the compiler can automatically deduce the type according to the definition of the function,



e.g. the type of function f n = n + 1 could be automatic infered as int → int. With the assumptions get
heavy, say one want to write a function that takes in a number n and return an indexed string array of
size n(notationally, Πn : Num.Array(String, n)), it is often hard for the compiler to deduce the type from the
program, in this case, certain amount of annotation is needed. With this notion of type, one will reasonable
want that type is invariant during the execution of program. For example, let f n = n + 1, g n = n + 2,
one would want the return value of f (g 3) to have type int. This requirement reflects the confirmation of
the type system and the actual execution, is a kind of soundness property, we will formulate it later as type
preservation property.

1.2 Motivations

It is well known that natural number can be encoded as lambda terms using Church encoding [10] or Scott
encoding (reported in [15]). So operations such as plus, multiplication can be performed by beta-reduction
(syntactic substitution) on lambda terms. Not only for natural number, other interesting inductive data
structures such as trees, lists, etc. ([6], chapter 11 in [23]) can also be represented in a similar fashion. For
discussons on the prospect of adopting Scott encoding in functional programming, we refer to Stump [37]
and Jansen et al.[29].

Through Curry-Howard correspondent, type in typed lambda calculi corresponds to the formula in in-
tuitionistic logic, and typed term corresponds to the proof of its formula(type) [28]. Due to this feature,
typed lambda calculi, especially dependent typed lambda calculi [30] have been included in the core language
for interactive theorem provers such as Agda, Coq([9], [40]); and for experimental functional programming
languages such as Epigram 2, Guru ([31], [38]). Another part of the core is the add-on data type system,
where various forms of data, including but not limted to inductive [33], coinductive [21], non-positive [35]
datatype, are taken as primitives. From language design’s point of view, if one want to adopt a rigor design
methodology and want to define a type safe functional core language, then it is necessary to show the core
language definitions satisfies type preservation and progress [45]. This requires substantial amount of efforts
to write proofs even though most of the proofs can be done by case analysis and induction. For minimal core
language such as Barendregt’s lambda cube [7], the type preservation argument is given. For core language
defintion which extends the lambda cube(or extends part of it), it is necessary and practical to have a notion
of datatype, but when datatype and pattern matching facillities are added to the core language, together with
binders, bound variables, alpha-conversion problems [3], it will substantially complicate the type preserva-
tion argument. For an example of this, see the Standard ML definition [32] and the type preservation report
of Standard ML by VanInwegen [41]. Furthermore, if one want the core language to be a total type theory,
i.e. can be used for reasoning, then a termination argument is required in order to show logical consistency
[19]. In this case, present of datatype make it hard to analyze the termination behavior of a well-typed term.
In fact, the core language of theorem prover Coq, Calculus of Inductive Construction(CIC), which extends
Calculus of Construction [12] with inductive datatype [13] and restricted recursion, the strong normalization
for well-typed term is still a conjecture [24].

Above discussions leads to the consideration of lambda encoding data as an alternative to handle datatype.
Church encoding data can be typed in system F [22], part of Barendregt’s lambda cube, type preservation
argument and strong normalization will not be an issue. The drawbacks of this approach, as summerized in
[43], are ineffecient to define certain operation on dataype, e.g. the predecessor, minus function; induction
principle is not derivable and unable to prove 0 6= 1. This gives reason to fallback to Gödel’s system T
(chapter 7 in [23]), which takes boolean and natural number as primitives. Scott encoding does not suffer
the ineffeciency problem arised in Church encoding, so as functional programming langauge, Scott encoding
seems to be a better fit than Church encoding [29]. Scott encoding was claimed to be typable in System F
[1], but it is unclear how to type recursve functions on such encoding in System F.

We propose a novel type system called Selfstar, which not only enable us to type Scott encoding and
Church encoding data, but also allow us to derive corresponding induction principle and case analysis
principle. This makes it a possible candidate for as core functional language.

2



1.3 Overveiw

Definitions of abstract reduction system, lambda calculus, simple types are given in section 2. We present
Scott and Church numerals in both untype and typed forms in section 3. Dependent type system and the
related problem with Church encoding are discussed in detail in section 4. Seciton 5, several methods to
show confluence are given. We give an outline of proving confluence for the term system of Selfstar (Section
5.2.1). Relation of confluence to type preservation is discussed in Section 5.3. We present system Selfstar
(Section 6.1), which not only enable us to type Scott encoding and Church encoding data, but also allow us
to derive corresponding induction principle and case analysis principle.

2 Preliminaries

2.1 Abstract Reduction System

We first introduce some basic concepts about abstract reduction system, sometimes it is also called term
rewriting system, labelled transition systems.

Definition 1. An abstract reduction system R is a tuple (A, {→i}i∈I), where A is a set and →i is a binary
relation(called reduction) on A indexed by a finite nonempty set I.

In an abstract reduction system R, we write a →i b if a, b ∈ A satisfy the relation →i, for convenient,
→i also denotes a subset of A×A such that (a, b) ∈→i if a→i b.

Definition 2. Given abstract reduction system (A, {→i}i∈I), the reflexive transitive closure of→i is written

as �i or
∗→i, is defined by:

• m�i m.

• m�i n if m→i n.

• m�i l if m�i n, n�i l.

Definition 3. Given abstract reduction system (A, {→i}i∈I), the convertibility relation =i is defined as the
equivalence relation generated by →i:

• m =i n if m�i n.

• n =i m if m =i n.

• m =i l if m =i n, n =i l.

Definition 4. We say a is reducible if there is a b such that a→i b. So a is in i-normal form if and only if
a is not reducible. We say b is a normal form of a with respect to →i if a�i b and b is not reducible. a and
b are joinable if there is c such that a�i c and b�i c. An abstract reduction system is strongly normalizing
if there are no infinite reduction path.

2.2 Lambda Calculus

We use x, y, z, s, n, x1, x2, ... to denote individual variable, t, t′, a, b, t1, t2, ... to denote term, ≡ to denote
syntactic equality. [t′/x]t to denote substituting the variable x in t for t′. The syntax and reduction for
lambda calculus is given as following.

Definition 5 (Lambda Calculus).
Term t ::= x | λx.t | t t′
Reduction (λx.t)t′ →β [t′/x]t
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For example, (λx.x x)(λx.x x), λy.y are concrete terms in lambda calculus. For a term λx.t, we call λ
the binder, x is binded , called bind variable. If a variable is not binded, we say it is a free variable.
We will treat terms up to α-equivalence, meaning, for any term t, one can always rename the binded
variables in t. So for example, λx.x x is the same as λy.y y, and λx.λy.x y is the same as λz.λx.z x.
(λx.λy.x y)((λz.z)z1)→β (λx.λy.x y)z1 →β λy.z1 y is a valid reduction sequence in lambda calculus. Note
that for reader’s convenient we underline the part we are going to carry out the reduction(we will not do
this again) and we call the underline term redex. For a comprehensive introducton on lambda calculus, we
refer to [5].

2.3 Simple Types

We use A,B,C,X, Y, Z, ... to denote type variable, T, S, U... to denote any type.

Definition 6.
Type T ::= X | T1 → T2
Context Γ ::= · | Γ, x : T

We call T1 → T2 arrow type, Typing is a procedure to associate a term with a type. Typing is usually
described by a set of rules, indicating how to associate a term t with a type T in given context Γ, denoted
by Γ ` t : T . We present simply typed lambda calculus below.

Definition 7.

(x : T ) ∈ Γ

Γ ` x : T
Var

Γ, x : T1 ` t : T2
Γ ` λx.t : T1 → T2

Abs
Γ ` t : T1 → T2 Γ ` t′ : T1

Γ ` t t′ : T2
App

Simply typed lambda calculus provides a basic framework for many sophisticated type systems. It is
quite restrictive from both logical and programming point of view, since logically it corresponds to minimal
intuitionistic propositional logic [27] and it only accepts a small set of strong normalizing terms. It has two
properties, namely, type preservation and strongly normalization. For proofs of these two theorem we refer
to [36].

Theorem 1 (Type Preservation). If Γ ` t : T and t→β t
′, then Γ ` t′ : T .

Theorem 2. If Γ ` t : T , then t is strongly normalizing.

3 Lambda Encoding with Types

3.1 Church Encoding

Definition 8 (Church Numeral).
0 := λs.λz.z
S := λn.λs.λz.s(n s z)

From above we know 1 := S 0 ≡ (λn.λs.λz.s(n s z))(λs.λz.z) →β λs.λz.s((λs.λz.z)s z) →β λs.λz.s z.
Note that the last part of above reductions occur underneath the lambda abstractions. Similarly we can get
2 := λs.λz.s s z.

Informally, we can interpret lambda term as both data and function, so instead of thinking data 2 as
data, one can think of it as a higher order function h, which take in a function f and a data a as arguments,
then apply the function f to a two times.

One can define a notion of iterator It n f t := n f t. So It 0 f t =β t and It (S u) f t =β f(It u f t). So
now we can use iterator to define Plus n m := It n S m.
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3.2 Scott Encoding

Definition 9 (Scott Numeral).
0 := λs.λz.z
S := λn.λs.λz.s n

We can see 1 := λs.λz.(s 0), 2 := λs.λz.(s 1). One can define a notion of recursor. But before defining
that, we give one version of the fix point operator Fix := λf.(λx.f (x x))(λx.f (x x)). The reason it is called fix
point operator is when it applied to a lambda expression, it give a fix point of that lambda expression(recall
informally each lambda expression is both data and function). So Fix g →β (λx.g (x x))(λx.g (x x)) →β

g((λx.g (x x)) (λx.g (x x))) =β g (Fix g).
Since fix point operator is expressable with a lambda expression, the direct consequence is we can

define recursor: Rec := Fix λr.λn.λf.λv.n (λm.f (r m f v) m) v. So we get Rec 0 f v�βv and
Rec (S n) f v�βf (Rec n f v) n. In a similar fashion, one can define Plus n m := Rec n (λx.λy.S x) m.

The predecessor function can be easily defined as Pred n := Rec n (λx.λy.y) 0. It only takes constant
time (w.r.t. the number of beta reduction steps) to calculate the predessesor. But this function is tricky to
define with Church encoding, one need to first define recursor with iterator, then use recursor to define Pred.
To calculate Pred n with Church encoding, one has to perform at least n steps, so it takes linear time [23].

3.3 Church Encoding in System F

System F is an extension of simply typed lambda calculus, the only addition is a polymorphic type ∀X.T .
Note that here ∀ is a binder. The additional typing rules are follows:

Γ ` t : T X /∈ FV (Γ)

Γ ` t : ∀X.T Gen
Γ ` t : ∀X.T

Γ ` t : [T ′/X]T
Inst

X /∈ FV (Γ) means X is not a free type variable in the types of the typing context Γ. For example, given
above typing rule, we can asscociate identity function with a polymorphic type, i.e. · ` λx.x : ∀X.X → X.
And we also have · ` λx.x : T → T for any type T .

We define Nat := ∀X.(X → X)→ X → X. One can type the constructors 0 and S as following.

s : X → X, z : X ` z : X

· ` λs.λz.z : (X → X)→ X → X

· ` λs.λz.z : ∀X.(X → X)→ X → X

For space reason, we only list · ` 0 : Nat, similarly one will can type:
· ` S : Nat→ Nat
· ` It : ∀X.Nat→ (X → X)→ X → X
· ` Plus : Nat→ Nat→ Nat

System F and Church encoding fit together really well, indeed, being able to define inductive data
type within the type system is one of the motivations for devising system F[23]. Through Curry-Howard
correspondent, one can view types in system F as intuitionistic proposition, the quantification proposition
∀X.T is considered impredicative in the sense that X can be instantiated by any proposition, including
itself, terms in system F becomes proof for the proposition. System F is also type preserving and strongly
normalizing [23].

3.4 Scott Encoding with Recursive Types

It is not obvious to type Scott encoding with system F. We extend simply typed lambda calculus with
recursive types µX.T . Note that here µ is a binder. The additional typing rules are follows:
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Γ ` t : [µX.T/X]T

Γ ` t : µX.T
Fold

Γ ` t : µX.T

Γ ` t : [µX.T/X]T
unFold

With recursive type, define Nat := µX.(X → U) → U → U for any type U . We introduce a notation
T ∼ T ′ to mean there exist a derivation from Γ ` t : T to Γ ` t : T ′, is called morphing relation. Thus
Nat ∼ (Nat→ U)→ U → U .

s : Nat→ U, z : U ` z : U

· ` λs.λz.z : (Nat→ U)→ U → U

· ` λs.λz.z : Nat

n : Nat, s : Nat→ U, z : U ` s n : U

n : Nat ` λs.λz.s n : (Nat→ U)→ U → U

n : Nat ` λs.λz.s n : Nat

· ` Fix : (U → U)→ U for any type U .
· ` Rec : Nat→ (U → Nat→ U)→ U → U .
· ` Plus : Nat→ Nat→ Nat.

Recursive types is powerful enough to capture the typing for Church encoding, define Nat := µX.(X →
X)→ X → X. Thus Nat ∼ (Nat→ Nat)→ Nat→ Nat.

s : Nat→ Nat, z : Nat ` z : Nat

· ` λs.λz.z : (Nat→ Nat)→ Nat→ Nat

· ` λs.λz.z : Nat

n : Nat, s : Nat→ Nat, z : Nat ` s (n s z) : Nat

n : Nat ` λs.λz.s (n s z) : (Nat→ Nat)→ Nat→ Nat

n : Nat ` λs.λz.s (n s z) : Nat

· ` It : Nat→ (Nat→ Nat)→ Nat→ Nat. We can see that here, because of lack of support for polymorphic
type, the iterator for Church encoding numerals can only deal with numerals. Note that recursive types can
not be interpreted as formula under Curry-Howard correspondent.

Recursive types and its denotational semantics have been studied extensively in [44], [7]. The recursive
type system is type preserving but not strongly normalizing.

4 Dependent Type

In order to enable type to mention terms, we extend the types of system F with dependent type(product
type) Πx : T.T ′ and index type T t. The additional typing rules are:

Γ, x : T ′ ` t : T x ∈ FV (T )

Γ ` λx.t : Πx : T ′.T
Pi

Γ ` t : Πx : T ′.T Γ ` t′ : T ′

Γ ` t t′ : [t′/x]T
Elim

Γ ` t : [t1/x]T t1 =β t2

Γ ` t : [t2/x]T
Conv

So far the typing rule does not prevent us to write things like (T1 → T2)x, so we introduce kind(denoted
by κ) and the process of kinding to regulate the type we write. We extend the notion of context and change
the form of the type ∀X.T in system F to ∀X : κ.T to allow a finer classification of type. We say type T has
kind κ under the context Γ, denoted by Γ ` T : κ.

Definition 10 (Kind and Kinding). Kind κ := ∗ | ξx : T.κ
Context Γ := · | Γ, x : T | Γ, X : κ
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X : κ ∈ Γ
Γ ` X : κ

K-Var
Γ ` S : ξx : T ′.κ Γ ` t′ : T ′ Γ ` T ′ : ∗

Γ ` S t′ : [t′/x]κ
K-App

Γ ` T ′ : ∗ Γ, x : T ′ ` T : ∗
Γ ` Πx : T ′.T : ∗ K-Pi

Γ, X : κ ` T : ∗
Γ ` ∀X : κ.T : ∗ K-Forall

Γ ` T1 : ∗ Γ ` T2 : ∗
Γ ` T1 → T2 : ∗ K-Arrow

Note that the ξ in ξx : T.κ is a binder, with its scope in κ.

Definition 11 (Revised System F Typing).

Γ, X : κ ` t : T X /∈ FV (Γ)

Γ ` t : ∀X : κ.T
Gen

Γ ` t : ∀X : κ.T Γ ` T ′ : κ
Γ ` t : [T ′/X]T

Inst

Now let us see an example. We already seen Church numeral Nat with operation Plus can be encoded in
System F. With dependent type, we can do some lightweight external reasoning on our Church numerals.
One can express Leibniz’s law as: Eq [A] x y := ∀C : (ξz : A.∗).C x → C y. It reads as: given any x and
y, they are in the relation Eq(x, y) if, given any predicate C, if C(x), then C(y) [17]. Now we can show
· ` λx.x : Eq [Nat] (Plus 1 1) 2. It is derivable because the following derivation:

C : (ξz : Nat.∗), x : C (Plus 1 1) ` x : C (Plus 1 1)
Var

(Plus 1 1) =β 2

C : (ξz : Nat.∗), x : C (Plus 1 1) ` x : C 2
Conv

C : (ξz : Nat.∗) ` λx.x : C (Plus 1 1)→ C 2
Abs

· ` λx.x : ∀C : (ξz : Nat.∗).C (Plus 1 1)→ C 2
Gen

· ` λx.x : Eq [Nat] (Plus 1 1) 2
Def

Note that the last step is by definition of Eq. Similarly, the following is a derivation of A : ∗, a : A ` λx.x :
Eq [A] a a.

A : ∗, a : A,C : (ξz : A.∗), x : C a ` x : C a
Var

A : ∗, a : A,C : (ξz : A.∗) ` λx.x : C a→ C a
Abs

A : ∗, a : A ` λx.x : ∀C : (ξz : A.∗).C a→ C a
Gen

A : ∗, a : A ` λx.x : Eq [A] a a
Def

A : ∗ ` λa.λx.x : Πa : A.Eq [A] a a
Abs

· ` λa.λx.x : ∀A : ∗.Πa : A.Eq [A] a a
Gen

The derivation above can be viewed as a proof of reflexitive for the Eq(Namely, the formula ∀A : ∗.Πa :
A.Eq [A] a a); or it can be viewed as a procedure to associate the type ∀A : ∗.Πa : A.Eq [A] a a to a lambda
term λa.λx.x. Since under Curry-Howard correspondent, dependent type can be interpreted as intuitionistic
formula [7]. One can also derive a proof for ∀A : ∗.Πa : A.Πb : A.∀B : (ξx : A.∗).B a→ (Eq [A] a b)→ B b,
which is called the substitution property for Leibniz’s equality.

We have seen we can prove some very basic properties about Church numerals with the operation Plus
and the relation Eq. For functions like Plus, one would also like to prove properties about commutativity,
associativity etc. For such properties, the proof normally will involve induction argument, but it is known
that induction is not derivable in second order dependent type system [20]. Note that induction principle
can be expressed as Id := ∀P : (ξx : Nat.∗).P 0 → (Πy : Nat.(P y) → (P (S y))) → Πx : Nat.P x. So this
means there does not exist any derivation and term t such that · ` t : Id. Because, informally, we can only
have
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x : Nat ` 0 : ∀P : (ξx : Nat.∗).P 0→ (Πy : Nat.(P y)→ (P (S y)))→ P 0
x : Nat ` n̄ : ∀P : (ξx : Nat.∗).P 0→ (Πy : Nat.(P y)→ (P (S y)))→ P n̄, for any Church numerals n̄
Here we can see that the dependent type system can not capture the notion of for any Church numerals
n̄ , since it involves a meta-level quantification. This problem is also discussed in Coquand’s [11]. In later
section, we propose Selfstar, with the help of recursive definition and self type mechanism, we can effectively
capture this kind of meta-level quantification.

The second problem is that in dependent type with Church encoding [43], 0 6= 1 is not derivable. Note
that 0 6= 1 can be represented as (Eq [Nat] 0 1) → ⊥, where ⊥ := ∀Q : ∗.Q. In intuitionistic logic, ¬A is
expressed as A → ⊥. ⊥ means contradiction, can be encoded in system F as ∀Q : ∗.Q, because there is no
derivation such that · ` t : ∀Q : ∗.Q [23]. Because the non-derivability of ⊥, (Eq [Nat] 0 1) → ⊥ become
underivable. Thus 0 6= 1 is not a theorem in dependent type system.

In a sense these problems are not surprising, that is why in Peano arithmetic and Heyting arithmetic
[34], [26], both of these system have numbers as primitives, induction, 0 6= 1 and many others as axioms.

5 Confluence

We seen the use of reduction(→β) to convey a notion of equation(=β). Informally, the equation a = b means
a and b denotes the same thing; while the reduction a→ b convey how one can obtain the expression b from
a, even though both a and b denote the same thing. So to interpret the equation S 0 + (S S 0) = S S S 0
by saying the expressions at both side denote the same thing is uninteresting; but S 0 + (S S 0) →
0 + (S S S 0) → S S S 0 shows how one can obtain the expression S S S 0 from the expression S 0 + (S S 0)
by applying appropriate rules. The difference between reduction and equation is discussed in Girard’s ([23],
chapter 1), for a philosophical perspective on this distinction(sense and denotation distinction), we refer to
Frege’s [18].

Beta reduction →β will be analyzed in this section. We first identify the confluent property and Church-
Rosser property in abstract reduction system (similar treatment can be found at [8], [4]) and illustrate
some consequences of confluence and Church-Rosser, then we survey three methods to show →β reduction
is confluent.

Definition 12. Given an abstract reduction system (A, {→i}i∈I), let → denote
⋃
i∈I →i, let = denote the

equivalence relation generated by →.

• Confluence: For any a, b, c ∈ A, if a� b and a� c, then there exist d ∈ A such that b� d and c� d.

• Church-Rosser: For any a, b ∈ A, if a = b, then there is a c ∈ A such that a� c and b� c.

The two properties above can be expressed by following diagrams:

a

b
��

c

--

d
��

--

a = b

c
��

--

Lemma 1. An abstract reduction system R is confluent iff it is Church-Rosser.

Proof. Assume the same notation as defintion 12.
“⇐”: Assume R is Church-Rosser. For any a, b, c ∈ A, if a � b and a � c, then this means b = c. By

Church-Rosser, there is a d ∈ A, such that b� d and c� d.
“⇒”: Assume R is Confluent. For any a, b ∈ A, if a = b, then we show there is a c ∈ A such that a� c

and b� c by induction on the generation of a = b:
If a� b⇒ a = b, then let c be b.
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If b = a⇒ a = b, by induction, there is a c such that b� c and a� c.
If a = d, d = b ⇒ a = b, by induction there is a c1 such that a � c1 and d � c1; there is a c2 such that

d � c2 and b � c2. So now we get d � c1 and d � c2, by confluence, we have a c such that c1 � c and
c2 � c. So a� c1 � c and b� c2 � c. This process is illustrated by the following diagram:

a = d = b

c1
��

--

c2
��

--

c
��

--

The definition of = depends on �, the definition of � depends on →, confluence is often easier to prove
compare to Church-Rosser, in the sense that it is easier to anaylze � compare to =. Now let us see some
consequences of confluence.

Corollary 1. If R is confluent, then every element in A has at most one normal form.

Proof. Assume a ∈ A, b, c are two diferent normal forms for a. So we have a� b and a� c, by confluence,
there exist a d such that b� d and c� d. But b, c are normal form, this implies b and c are the same as d,
which contradicts that they are two different normal form.

Definition 13. For an abstract reduction system R, it is trivial if for any a, b ∈ A, a = b.

Corollary 2. If R is confluent and there are at least two different normal forms, then R is not trivial.

5.1 Tait-Martin Löf’s Method

We want to show lambda calculus as an abstract reduction system is confluent. We present a method of
proving confluence in abstract reduction system, which is due to W. Tait and P. Martin-Löf(reported in [5]).
Then we show how we can apply this method to show lambda calculus is confluent.

Definition 14 (Diamond Property). Given an abstract reduction system (A, {→i}i∈I), it has diamond
property if:

For any a, b, c ∈ A, if a→ b and a→ c, then there exist d ∈ A such that b→ d and c→ d.

a

b
�

c

-

d
�

-

Lemma 2. If R has diamond property, then it is confluent.

Proof. By simple diagam chasing suggested below:
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a

c1
�

c2

-

e
�

d
�

-

b

-

c1
�

-

c2
�

-

c
�

-

Lemma 3. If exist some →i, →⊆→i⊆� and →i satisfies diamond property, then → is confluent.

Proof. Since →⊆→i⊆� implies �⊆�i ⊆�, so �i= �. And the diamond property of →i implies →i is
confluence, thus implies the confluence of →.

Sometimes → may not satisfy diamond property, then one can look for the possibility to construct an
intermediate reduction →i such that it has diamond property. That is exactly what we will do for lambda
calculus.

5.1.1 Confluence of Lambda calculus

Beta reduction itself does not satsify diamond property, for example, (λx.((λu.u) v) ((λy.y y) z) →β

(λx.((λu.u) v)) (z z) and (λx.((λu.u) v) ((λy.y y) z) →β (λu.u) v. And one can not join (λu.u) v and
(λx.((λu.u) v)) (z z) in one step. But one can see they are still joinable, but not joinable in one step. This
leads to the notion of parallel reduciton.

Definition 15 (Parallel Reduction).

t⇒β t

t⇒β t
′

λx.t⇒β λx.t
′

t1 ⇒β t
′
1 t2 ⇒β t

′
2

t1t2 ⇒β t
′
1t
′
2

t1 ⇒β t
′
1 t2 ⇒β t

′
2

(λx.t1)t2 ⇒β [t′2/x]t′1

Intuitively, parallel reduction allows us to contract many beta redex(or not contracting at all) in once
step, under this notion of one step reduction, we can obtain diamond property for ⇒β .

Lemma 4. If t1 ⇒β t
′
1 and t2 ⇒β t

′
2, then [t2/x]t1 ⇒β [t′2/x]t′1.

Proof. By induction on the derivation of t1 ⇒β t
′
1. We will not prove this here.

Lemma 5. ⇒β satisfies diamond property.

Proof. Assume t⇒β t1 and t⇒β t2, we need to show there exists a t3 such that t1 ⇒β t3 and t2 ⇒β t3. We
prove this by induction on the derivation of t⇒β t1.

Case: t⇒β t Simply let t3 be t.

Case:

t′ ⇒β t
′′

λx.t′ ⇒β λx.t
′′

In this case t is of the form λx.t′, where t′ ⇒β t
′′; t1 is of the form λx.t′′. t2 must be of the form λx.t′′′,

where t′ ⇒β t
′′′. Thus by induction, we have a t′3 such that t′′ ⇒β t

′
3 and t′′′ ⇒β t

′
3. Thus let t3 be λx.t′3,

we get t1 ≡ λx.t′′ ⇒β λx.t
′
3 ≡ t3 and t2 ≡ λx.t′′′ ⇒β λx.t

′
3 ≡ t3.

10



Case:

t4 ⇒β t
′
4 t5 ⇒β t

′
5

(λx.t4)t5 ⇒β [t′4/x]t′5
In this case t is of the form (λx.t4)t5, t1 is of the form [t′5/x]t′4, t4 ⇒β t

′
4 and t5 ⇒β t

′
5.

If t2 is of the form (λx.t′′4)t′′5 , where t4 ⇒β t
′′
4 and t5 ⇒β t

′′
5 . Thus by induction, we have a t6 such that

t′′5 ⇒β t6 and t′5 ⇒β t6. And same by induction, there is a t7 such that t′′4 ⇒β t7 and t′4 ⇒β t7. Thus let t3
be [t6/x]t7, we get t1 ≡ [t′5/x]t′4 ⇒β [t6/x]t7 ≡ t3(by lemma 4) and t2 ≡ (λx.t′′4)t′′5 ⇒β [t6/x]t7 ≡ t3.

If t2 is of the form [t′′5/x]t′′4 , where t4 ⇒β t
′′
4 and t5 ⇒β t

′′
5 . Thus by induction, we have a t6 such that

t′′5 ⇒β t6 and t′5 ⇒β t6. And same by induction, there is a t7 such that t′′4 ⇒β t7 and t′4 ⇒β t7. Thus let t3
be [t6/x]t7, by lemma 4, we get t1 ≡ [t′5/x]t′4 ⇒β [t6/x]t7 ≡ t3 and t2 ≡ [t′′5/x]t′′4 ⇒β [t6/x]t7 ≡ t3.

Note: Careful readers are recommended to draw the corresponding diagrams while reading this proof.

Case:

t4 ⇒β t
′
4 t5 ⇒β t

′
5

t4t5 ⇒β t
′
4t
′
5

Similar to the arguments above.

Lemma 6. →β⊆⇒β⊆�β.

Theorem 3. →β reduction is confluent.

Proof. By lemma 3, lemma 5 and lemma 6.

5.1.2 Takahashi’s Method

Based on the notion of parallel reduction, Takahashi [39] observed, instead of trying to prove⇒β has diamond
property, one can prove a stronger property.

Definition 16. ⇒β is said to satisfy triangle property if: t ⇒β t
′ implies t′ ⇒β t

∗, where t∗(we called it
parallel contraction) is defined as:
x∗ := x.
(λx.t)∗ := λx.t∗.
(t1 t2)∗ := t∗1 t

∗
2 if t1 t2 is not a beta redex.

((λx.t1) t2)∗ := [t∗2/x]t∗1.

t

t′

====⇒

t∗
?⇐

=
=

One can see that the definition of t∗ only depends on t and ∗ is really a recursively defined function that
contract all the redex in t, so once we prove ⇒β has triangle property(name from [8]), that will implies the
diamond property.

Lemma 7. If ⇒β has triangle property, then it has diamond property.

Proof.

t

t1
⇐=

==
=

t2

====⇒

t∗
?⇐

=
=

=
=⇒

11



Lemma 8. ⇒β has triangle property.

Proof. Assume t⇒β t
′, we prove this by induction on the derivation of t⇒β t

′.

Case: t⇒β t
We need to show t⇒β t

∗. This can be proved by induction on the form of t, we will not go through the
proof here.

Case:

t1 ⇒β t
′
1

λx.t1 ⇒β λx.t
′
1

t is of the form λx.t1, where t1 ⇒β t′1; t′ is of the form λx.t′1. By induction, there exist a reduction
t′1 ⇒β t

∗
1. Thus there is a reduction λx.t′1 ⇒β λx.t

∗
1 ≡ (λx.t1)∗.

Case:

t4 ⇒β t
′
4 t5 ⇒β t

′
5

(λx.t4)t5 ⇒β [t′4/x]t′5
t is of the form (λx.t4)t5, t′ is of the form [t′5/x]t′4, t4 ⇒β t′4 and t5 ⇒β t′5. By induction, there is a

reduction t′4 ⇒β t
∗
4 and t′5 ⇒β t

∗
5. Thus there is a reduction [t′5/x]t′4 ⇒β [t∗5/x]t∗4 ≡ ((λx.t4) t5)∗(lemma 4).

Case:

t4 ⇒β t
′
4 t5 ⇒β t

′
5

t4t5 ⇒β t
′
4t
′
5

t is of the form t4 t5, t′ is of the form t′4 t
′
5, t4 ⇒β t

′
4 and t5 ⇒β t

′
5.

Assume t4 ≡ λx.t6, then t′4 must be of the form λx.t′6 with t6 ⇒β t
′
6. By induction, there is a reduction

t′6 ⇒β t
∗
6 and t′5 ⇒β t

∗
5. So t′4 t

′
5 ≡ (λx.t′6) t′5 ⇒β [t∗5/x]t∗6 ≡ ((λx.t6) t5)∗ ≡ (t4 t5)∗.

Assume t4 is not of the form λx.t6. By induction, there is a reduction t′4 ⇒β t
∗
4 and t′5 ⇒β t

∗
5. Thus there

is a reduction t′4t
′
5 ⇒β t

∗
4 t
∗
5 ≡ (t4 t5)∗.

5.1.3 Barendregt’s Labelling Method

Barendregt provide a method to prove the confluence of beta reduction for lambda calculus without appeal
to diamond property [5], which has an advantage over Tait-Martin Löf’s(and Takahashi’s) method in the
sense that one does not need to formulate the parallel reduction.

The new concepts involved are labelled terms and labelled reduction, both of which are extension of the
usual terms and reduction.

Definition 17 (Labelled Terms).
t ::= x | λx.t | tt′ | (λx.t)t′

We simply label certain beta redexes. Note that λx.t is not a well-formed labelled term, but (λx.t)t′ is
a well-formed labelled term. The labelled beta reduction extends the usual beta reduction naturally in the
sense that it can reduce the labelled beta redex.

Definition 18 (Labelled Beta Reduction).

(λx.t)t′ →β [t′/x]t (λx.t)t′ →β [t′/x]t

t→β t
′

λx.t→β λx.t
′

t→β t
′′

tt′ →β t
′′t′

t′ →β t
′′

tt′ →β tt
′′

u→β u
′

(λx.u)t′ →β (λx.u′)t′

t′ →β t
′′

(λx.u)t′ →β (λx.u)t′′

It is natural to make sure that: if t is a well-formed labelled term and t→β t
′, then t′ is also a well-formed

labelled term. We can do this by induction on the derivation of t→β t
′. We will use Λ to denote the set of

all labelled terms, Λ to denote the set of unlabelled terms. So Λ ⊂ Λ. As usual, �β denotes the reflexive
and transitive closure of →β . →β is defined on terms in Λ. Note that →β⊆→β .
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Definition 19 (Erasure). We define erasure function e : Λ→ Λ as below:

e(x) := x
e(tt′) := e(t)e(t′)
e(λx.t′) := λx.e(t′)
e((λx.t)t′) := (λx.e(t))e(t′)
graphically denoted by →e

Definition 20 (Contraction). We define a contraction function φ : Λ→ Λ as below:

φ(x) := x
φ(tt′) := φ(t)φ(t′)
φ(λx.t′) := λx.φ(t′)
φ((λx.t)t′) := [φ(t′)/x]φ(t)
graphically denoted by →φ

The erasure recursively remove all the labels in a term t ∈ Λ without changing the structure of the term.
The contraction functions recursively reduce all the labelled redexes in a labelled term.

Lemma 9. If t1 →β t2 and t′1 →e t1, then there exist t′2 such that t′1 →β t
′
2, and t′2 →e t2.

t′1
β
- t′2

t1

e
?

β
- t2

e
?

Proof. If t1 →β t2, then t2 is obtained by contracting one redex ∆ in t1. We reduce ∆(either labelled or
unlabelled) in t′1 we get t′2(recalled that →β⊆→β), which has e(t′2) = t2.

Lemma 10.

t′1
β
-- t′2

t1

e
?

β
-- t2

e
?

Proof. Using lemma 9. By transitivity.

Lemma 11. φ([t′/x]t) = [φ(t′)/x]φ(t).

Proof. By induction on the structure of labelled term t.

Lemma 12.

t1
β
- t2

φ(t1)

φ
?

β
-- φ(t2)

φ
?

Proof. By induction on the derivation of t1 →β t2. Using lemma 11.
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Lemma 13.

t

e(t)
β
--

�

e

φ(t)

φ
-

Proof. By induction on the structure of t.

Lemma 14 (Strip Lemma).

t

t1
�

β

t2

β
--

t′
��

ββ --

Proof. Let t1 be the result of reducing the redex ∆ in t. Let t3 ∈ Λ be the term obtained from t by indexing
∆. So φ(t3) ≡ t1. By the following diagram:

t

t1 �
φ

�

β

t3

e

6

t2

β

--

t′ �
φ

��

β
β

--

t4

e

6

β
--

Strip lemma implies confluence by simple diagram chasing. Thus we can conclude the confluence of
lambda calculus. The above proof of strip lemma relies on the fact that: for any t→β t1, there exist t3 ∈ Λ
such that e(t3) ≡ t and φ(t3) ≡ t1. This limits the application of this method to the system that contains
multiple kinds of redexes and reductions. For example lambda calculus extends with λx.t x→η t. The term
λx.(λy.y z) x contains both beta redex and eta redex, contracting one will make the other disappear. So
if the definition of φ and e unchanged, consider λx.(λy.y z) x →η λy.y z. Since it does not constract a
beta redex, if we let t3 ≡ λx.(λy.y z) x ∈ Λ, then e(t3) ≡ λx.(λy.y z) x and φ(t3) ≡ λx.(λy.y z) x. So
φ(t3) 6≡ λy.y z in this case. So this method can not directly generalize to deal with lambda calculus with
beta and eta reductions, and also for reduction systems with multiple kinds of redexes and reductions.

5.2 Hardin’s Interpretation Method

Sometimes it is inevitable to deal with reduction systems that contains more than one reduction, for example,
(Λ, {→β ,→η}). Confluence problem for this kind of system require some nontrivial efforts to prove. Hardin’s
interpretion method [25] provide a way to deal with some of those reduction systems.
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Lemma 15 (Interpretation lemma). Let → be →1 ∪ →2, →1 being confluent and strongly normalizing.
We denote by ν(a) the →1-normal form of a. Suppose that there is some relation →i on →1 normal forms
satisfying:

→i⊆�, and a→2 b implies ν(a)�iν(b) (†)

Then the confluence of →i implies the confluence of →.

Proof. So suppose →i is confluent. If a�a′ and a�a′′. So by (†), ν(a)�iν(a′) and ν(a)�iν(a′′). Notice
that t→∗1t′ implies ν(t) = ν(t′)(By confluence and strong normalizing of →1). By confluence of →i, there
exists b such that ν(a′)�ib and ν(a′′)�ib. Since →i,→1⊆�, we got a′�ν(a′)�b and a′′�ν(a′′)�b. Hence
→ is confluent.

a

a′
��

ν(a)

1 ??
a′′

--

ν(a′)
��

i1
--

ν(a′′)
��

1i
--

b
��

ii
--

Hardin’s method reduce the confluence problem of →1 ∪ →2 to →i, given the confluence and strong
normalizing of→1, this make it possible to apply Tait-Martin-Löf’s (Takahashi’s) method to prove confluence
of →i.

5.2.1 Local λµ Calculus

We now show an applicaiton of Hardin’s method on a concrete example, this example arise naturally in
proving type preservation for Selfstar. The approach we adopt is similar to the one in [14]. The proofs are
in the appendix.

Definition 21 (Local Lambda Mu Terms).
Terms t ::= x | λx.t | tt′ | µt
Closure µ ::= {xi 7→ ti}i∈I

The closure is basically a set of recursively defined definitions. Let I be a finite nonempty index set. For
{xi 7→ ti}i∈I , we require for any 1 ≤ i ≤ n, the set of free variables of ti, FV(ti) ⊆ dom(µ) = {x1, ..., xn}
and we also do not allow reduction, definition substitution, substitution inside the closure, we call it local
property, without this property, we are in the dangerous of losing confluence property(see [2] for a detailed
discussion). µ ∈ t means the closure µ appears in t. ~µt denotes µ1...µnt. [t′/x](µt) ≡ µ([t′/x]t). So
FV(µt) = FV(t)− dom(µ).

Definition 22 (Beta-Reductions).

(λx.t)t′ →β [t′/x]t

(xi 7→ ti) ∈ µ
µxi →β µti

t→β t
′

λx.t→β λx.t
′

t→β t
′′

tt′ →β t
′′t′

t′ →β t
′′

tt′ →β tt
′′

t→β t
′

µt→β µt
′
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Definition 23 (Mu-Reductions).

dom(µ)#FV(t)

µt→µ t µ(λx.t)→µ λx.µt µ(t1t2)→µ (µt1)(µt2)

t→µ t
′

λx.t→µ λx.t
′

t′ →µ t
′′

tt′ →µ tt
′′

t→µ t
′′

tt′ →µ t
′′t′

t→µ t
′

µt→µ µt
′

5.2.2 Confluence of Local λµ Calculus

Lemma 16. →µ is strongly normalizing and confluent.

Definition 24 (µ-Normal Forms).
n ::= x | µxi | λx.n | nn′

We require xi ∈ dom(µ).

Definition 25 (µ-Normalize Funciton).
m(x) := x m(λy.t) := λy.m(t)
m(t1t2) := m(t1)m(t2) m(~µy) := y if y /∈ dom(~µ).
m(~µy) := µiy if y ∈ dom(µi). m(~µ(tt′)) := m(~µt)m(~µt′)
m(~µ(λx.t)) := λx.m(~µt).

Lemma 17. Let Φ denote the set of µ normal form, for any term t, m(t) ∈ Φ.

Definition 26 (β Reduction on µ-normal Forms).
n→β t

n→βµ m(t)

n→βµ n
′

λx.n→βµ λx.n
′

n′ →βµ n
′′

nn′ →βµ nn
′′

n→βµ n
′′

nn′ →βµ n
′′n′

Note that the last three rules follows from the first rule. For the second one, because n →β t implies
λx.n→β λx.t and m(λx.t) ≡ λx.m(t). The others follow similarly.

Definition 27 (Parallelization).

n⇒βµ n

(xi 7→ ti) ∈ µ
µxi ⇒βµ m(µti)

n1 ⇒βµ n
′
1 n2 ⇒βµ n

′
2

(λx.n1)n2 ⇒βµ m([n′1/x]n′2)

n⇒βµ n
′

λx.n⇒βµ λx.n
′

n′ ⇒βµ n
′′′ n⇒βµ n

′′

nn′ ⇒βµ n
′′n′′′

Lemma 18. →βµ⊆⇒βµ⊆→∗βµ.

Lemma 19. If n2 ⇒βµ n
′
2, then m([n2/x]n1)⇒βµ m([n′2/x]n1).

Lemma 20. m(m(t)) ≡ m(t) and m([m(t1)/y]m(t2)) ≡ m([t1/y]t2).

Lemma 21. If n1 ⇒βµ n
′
1 and n2 ⇒βµ n

′
2, then m([n2/x]n1)⇒βµ m([n′2/x]n′1).

Lemma 22. If n ⇒βµ n
′ and n ⇒βµ n

′′, then there exist n′′′ such that n′′ ⇒βµ n
′′′ and n′ ⇒βµ n

′′′. So
→βµ is confluent.

One can also use Takahashi’s method to prove the lemma above. We will not explore that here.

Lemma 23. If a→β b, then m(a)→∗βµ m(b).

Theorem 4. →β ∪ →µ is confluent.

Proof. By lemma 15.
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5.3 Type Preservation and Confluence

Recall the statement of the type preservation: If Γ ` t : T and t → t′, then Γ ` t′ : T . In dependent type
system, the following conversion rule is presented:

Γ ` t : T ′ T = T ′

Γ ` t : T
Conv

The common method to prove type preservation is by induction on the derivation of Γ ` t : T . One will reach
the case of Γ ` (λx.t1)t2 : T , where Γ ` λx.t1 : T1 → T2 , Γ ` t2 : T1 and T2 = T . Since (λx.t1)t2 → [t2/x]t1,
we need to show Γ ` [t2/x]t1 : T . Γ ` λx.t1 : T1 → T2 implies Γ, x : T ′1 ` t1 : T ′2 and T ′1 → T ′2 = T1 → T2. It
would be desirable to have T ′1 = T1 and T ′2 = T2, then we would have Γ, x : T ′1 ` t1 : T2 and Γ ` t2 : T ′1, so
we should be able to get Γ ` [t2/x]t1 : T2 and T2 = T .

So the question is: given that T ′1 → T ′2 = T1 → T2, is it true that T ′1 = T1, T ′2 = T2? We called
this inverse structure congruence problem. We know that given T ′1 = T1, T ′2 = T2, one can conclude that
T ′1 → T ′2 = T1 → T2. It is not immediate that the inverse structure congruence holds, so we need to analyze
the convertability relation between T ′1 → T ′2 and T1 → T2.
We would like the following invertability property holds.

Definition 28 (Inverse Structure Congruence). T1 → T2 = T ′1 → T ′2 implies T1 = T ′1 and T2 = T ′2.

A reducton system (T ,�), where T is a set of types, arise when we analyze the relation T = T ′. Often
for such system we want to design � such that T1 → T2 can only be reduced to T ′1 → T ′2 when T1 � T ′1
or T2 � T ′2. So confluence of (T ,�) will imply that, for T1 → T2 = T ′1 → T ′2, there is a T3 such that

T1 → T2
∗
� T3 and T ′1 → T ′2

∗
� T3. So we know T3 must be of the form T4 → T5. So T1

∗
� T4

∗
� T ′1

and T2
∗
� T5

∗
� T ′2, thus T1 = T ′1 and T2 = T ′2. So that is why confluence can be used to get the inverse

structure congruence property, thus to prove type preservation. This machinery can be better illustrated by
example, namely, the proof of type preservation for Selfstar, but we will have to leave that to future work.

6 Future Explorations and Conclusions

6.1 System Selfstar

This section we present a novel type system that extends dependent type system with recursive definitions,
∗ : ∗ and self type. The type for Church numerals and Scott numerals reflect a form of induction principle.
As a dependent typed programming language, we think it provides an alternative design approach handle
data types in functional programming language. While due to the present of recursive definition and ∗ : ∗,
we do not have Curry-Howard correspondent in this type system, so terms in Selfstar does not correspond
to proofs in intuitionistic logic.

Definition 29.
Term t ::= ∗ | x | λx.t | tt′ | µt | Πx : t1.t2 | ιx.t.
Closure µ ::= {xi 7→ ti}i∈I
Context Γ ::= · | Γ, x : t | Γ, µ̃

We called ιx.t self type and the closure µ is used for mutually recusive definitions, it follows the same
convention in section 5.2.1. ˜ is an operation(we call it lifting). If µ is {xi 7→ ti}i∈I , then µ̃ is {(xi : ai) 7→
ti}i∈I .

We collapse the syntax of terms and types, so the notion of types only arise when we have the judgement
Γ ` t : t′, we call t′ the type of t. We list only some essential rules for typing.

Definition 30 (Typing).
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Γ, x : t1 ` t2 : ∗ Γ ` t1 : ∗
Γ ` Πx : t1.t2 : ∗ Pi

(x : t) ∈ Γ

Γ ` x : t
Var

Γ ` ∗ : ∗ Star

Γ ` t : Πx : t1.t2 Γ ` t′ : t1
Γ ` tt′ : [t′/x]t2

App Γ ` t : ιx.t′

Γ ` t : [t/x]t′
SelfInst

Γ ` t : [t/x]t′

Γ ` t : ιx.t′
SelfGen

Γ ` t : t1 Γ ` t1 = t2
Γ ` t : t2

Conv
Γ, x : t1 ` t : t2 Γ ` t1 : ∗

Γ ` λx.t : Πx : t1.t2
Lam

Γ, x : ιx.t ` t : ∗
Γ ` ιx.t : ∗ Self

Γ, µ̃ ` t : t′ {Γ, µ̃ ` tj : aj}(tj :aj)∈µ̃
Γ ` µt : µt′

Mu

For type Πx : t1.t2 if the variable x does not appear in t2, we write t1 → t2 instead. Note that → in this
section has nothing to do with reduction. Now we can see how to type Church encoding and Scott encoding
with self type and resursvie defintion.

Definition 31 (Church Encoding). Let µ̃c be the following recursive defintions:
(Nat : ∗) 7→ ιx.ΠC : Nat→ ∗.(Πn : Nat.(C n)→ (C (S n)))→ (C 0)→ (C x)
(S : Nat→ Nat) 7→ λn.λC.λs.λz.s n (n C s z)
(0 : Nat) 7→ λC.λs.λz.z

Now let us see how we can derive µ̃c ` λC.λs.λz.z : Nat and µ̃c ` λn.λC.λs.λz.s n (n C s z) : Nat→ Nat.

µ̃c, C : Nat→ ∗, s : (Πn : Nat.(C n)→ (C (S n))), z : C 0 ` z : C 0
V ar

µ̃c, C : Nat→ ∗, s : (Πn : Nat.(C n)→ (C (S n))), z : C 0 ` z : C (λC.λs.λz.z)
Conv

µ̃c ` λC.λs.λz.z : ΠC : Nat→ ∗.(Πn : Nat.(C n)→ (C (S n)))→ (C 0)→ (C (λC.λs.λz.z))
Lam

µ̃c ` λC.λs.λz.z : ιx.ΠC : Nat→ ∗.(Πn : Nat.(C n)→ (C (S n)))→ (C 0)→ (C x)
SelfGen

µ̃c ` λC.λs.λz.z : Nat
Conv

∆1

µ̃c, n : Nat,Γ ` s n : (C n)→ (C (S n))
App

∆2

µ̃c, n : Nat,Γ ` n C s z : C n
App

µ̃c, n : Nat, C : Nat→ ∗, s : (Πn : Nat.(C n)→ (C (S n))), z : C 0 ` s n (n C s z) : C (S n)
App

µ̃c, n : Nat ` λC.λs.λz.s n (n C s z) : ΠC : Nat→ ∗.(Πn : Nat.(C n)→ (C (S n)))→ (C 0)→ (C (S n))
Lam

µ̃c, n : Nat ` λC.λs.λz.s n (n C s z) : ιx.ΠC : Nat→ ∗.(Πn : Nat.(C n)→ (C (S n)))→ (C 0)→ (C x)
= ι

µ̃c, n : Nat ` λC.λs.λz.s n (n C s z) : Nat

µ̃c ` λn.λC.λs.λz.s n (n C s z) : Nat→ Nat
Lam

In above derivation, Γ = C : Nat→ ∗, s : (Πn : Nat.(C n)→ (C (S n))), z : C 0, and = ι step first convert
S n to λC.λs.λz.s n (n C s z), then apply the SelfGen rule. The ∆1 is a subderivation:

µ̃c, n : Nat,Γ ` s : Πn : Nat.(C n)→ (C (S n))
V ar

µ̃c, n : Nat,Γ ` n : Nat
V ar

∆1

The ∆2 is a subderivation:

µ̃c, n : Nat,Γ ` n : Nat
V ar

µ̃c, n : Nat,Γ ` n : ιx.ΠC : Nat→ ∗.(Πn : Nat.(C n)→ (C (S n)))→ (C 0)→ (C x)
Conv

µ̃c, n : Nat,Γ ` n : ΠC : Nat→ ∗.(Πn : Nat.(C n)→ (C (S n)))→ (C 0)→ (C n)
SelfInst

∆3

∆2
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where ∆3:

µ̃c, n : Nat,Γ ` C : Nat→ ∗ V ar µ̃c, n : Nat,Γ ` s : Πn : Nat.(C n)→ (C (S n))
V ar

µ̃c, n : Nat,Γ ` z : C 0
V ar

∆3

The derivations above are a little lengthy, we present that only for the purpose of demonstration, we will
not give any derivation any more. Now the induction principle for Church encoding can be expressed as:
µ̃c ` (Ind := λC.λs.λz.λn.n C s z) : ΠC : Nat→ ∗.Πn : Nat.((C n)→ (C (S n)))→ C 0→ Πn : Nat.C n.

With ∗ : ∗, we now can define Leibniz’s equality as Eq := λA.λx.λy.ΠC : (A→ ∗).C x→ C y. Now we
have the judgement · ` Eq : ΠA : ∗.A→ A→ ∗. Now define addition:
µ̃c ` (add := λn.λm.Ind (λy.Nat) (λx.S) m n) : Nat→ Nat→ Nat.
Now one can use induction principle to derive µ̃c ` t : Πm : Nat.(Eq Nat (add m 0) m) for some term
t, the term t is a lambda expression that encode a proof of the formula Πm : Nat.(Eq Nat (add m 0) m)
(Namely, by induction on natural number m). Recalled that in this system we do not have Curry-Howard
correspondent, so t does not in general corresponds to a proofs of its type, but for the derivation of µ̃c ` t :
Πm : Nat.(Eq Nat (add m 0) m), we do not use any illogical principle, we still want to say it is a valid proof.
So for future work, we want to identify a fragment of Selfstar that is logically consistent.

Definition 32 (Scott Encoding). Let µ̃s be the following recursive defintions:
(Nat : ∗) 7→ ιx.ΠC : Nat→ ∗.(Πn : Nat.C (S n))→ (C 0)→ (C x)
(S : Nat→ Nat) 7→ λn.λC.λs.λz.s n
(0 : Nat) 7→ λC.λs.λz.z

With Scott numerals defined above, one can derive a case analysis principle:
µ̃s ` (Case := λC.λs.λz.λn.n C s z) : ΠC : Nat→ ∗.Πn : Nat.(C (S n))→ C 0→ Πn : Nat.C n
addition function can also be defined by extending the closure µ̃s by
(add : Nat→ Nat→ Nat) 7→ λn.λm.Case (λn.Nat) (λp.(S (add p m))) m n

One can further prove theorems about the add function like what we did for Church encoding, we will
not pursue that here. Interestingly the expression for Case and Ind are the same, they are used in the
add operation for the typing purpose. Comparing with Church version, one can see two styles of defining
addition, one through iteration, the other through recurison, both of which are expressible within the Selfstar
system.

6.2 Conclusion and Future Works

Conclusion: We present two methods to represent natural number as lambda terms, namely, Church
encoding and Scott encoding. We also surveyed type systems from simply typed lambda calculus to second
order dependent type systems. Church encoding with system F and Scott encoding with recursive type
are discussed. Some of the problems with Church encoding data in dependent type systems are addressed.
System Selfstar is presented as a respond to the problems arise in dependent type system, and also to general
data type design in functional programming language.

Type preservation problem of Selfstar leads us to another line of works that related to term rewriting.
The notion of abstract reduction system is introduced, and several methods to prove confluence are included.
The a fragment of term system of the Selfstar is shown to be confluent. The connection between confluence
and type preservation is illustrated. Church and Scott encoding numerals are typed in Selfstar, together with
the corresponding induction and case analysis principles, some simple theorems are presented to demonstrate
the logical reasoning.
Future Works: We want to extend the confluence of the λµ to the whole Selfstar system, then to establish
type preservation. We also want to identify a logical fragment of Selfstar and show this logical fragment is
consistent. Last but not least, we want to refine the prototype system to reflects some of the new ideas from
the analysis of Selfstar.
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A Proofs

A.1 Proof of Lemma 17

Let Φ denote the set of µ normal form, for any term t, m(t) ∈ Φ.

Proof. One way to prove this is first identify t as −̇→µ1t
′, here −̇→µ1 means there are zero or more closures and t′

does not contains any closure at head position. Then we can proceed by induction on the structure of t′:

Base Cases: t′ = x, obvious.

Step Cases: If t′ = λx.t′′, then m(−̇→µ1(λx.t′′)) ≡ λx.m(−̇→µ1t
′′). Now we can again identify t′′ as −̇→µ2t

′′′,
where t′′′ does not have any closure at head position. Since t′′′ is structurally smaller than λx.t′′, by IH,

m(−̇→µ1
−̇→µ2t
′′′) ∈ Φ, thus m(−̇→µ1(λx.t′′)) ≡ λx.m(−̇→µ1t

′′) ∈ Φ.
For t′ = t1t2, we can argue similarly as above.

A.2 Proof of Lemma 19

If n2 ⇒βµ n
′
2, then m([n2/x]n1)⇒βµ m([n′2/x]n1).

Proof. By induction on the structure of n1. We list a few non-trivial cases:

Base Cases: n1 = x, n1 = µxi, Obvious.

Step Case: n1 = λy.n. We have m(λy.[n2/x]n) ≡ λy.m([n2/x]n)
IH⇒βµ λy.m([n′2/x]n) ≡ m(λy.[n′2/x]n).

Step Case: n1 = nn′. We havem([n2/x]n[n2/x]n′) ≡ m([n2/x]n)m([n2/x]n′)
IH⇒βµ m([n′2/x]n)m([n′2/x]n′) ≡

m([n′2/x]n[n′2/x]n).
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A.3 Proof of Lemma 20

m(m(t)) ≡ m(t) and m([m(t1)/y]m(t2)) ≡ m([t1/y]t2).

Proof. The first equality is by lemma 17. For the second equality, we prove it through similar method as

lemma 17: We identify t2 as −̇→µ1t
′
2, t′2 does not contains any closure at head position. We proceed by induction

on the structure of t′2:

Base Cases: For t′2 = x, we use m(m(t)) ≡ m(t).

Step Cases: If t′2 = λx.t′′2 , then m(−̇→µ1(λx.[t1/y]t′′2)) ≡ λx.m(−̇→µ1([t1/y]t′′2)) ≡ λx.m(−̇→µ1
−̇→µ2([t1/y]t′′′2 )), where

t′′2 as −̇→µ2t
′′′
2 and t′′′2 does not have any closure at head position. Since t′′′2 is structurally smaller than λx.t′′2 ,

by IH, m(−̇→µ1
−̇→µ2([t1/y]t′′′2 )) ≡ m([t1/y](−̇→µ1

−̇→µ2t
′′′
2 )) ≡ m([m(t1)/y]m(−̇→µ1

−̇→µ2t
′′′
2 )). Thus λx.m(−̇→µ1

−̇→µ2([t1/y]t′′′2 )) ≡
λx.m([m(t1)/y]m(−̇→µ1

−̇→µ2t
′′′
2 )). Som([t1/y]−̇→µ1(λx.t′′2)) ≡ m([m(t1)/y]m(λx.−̇→µ1

−̇→µ2t
′′′
2 )) ≡ m([m(t1)/y]m(λx.−̇→µ1t

′′
2)) ≡

m([m(t1)/y]m(−̇→µ1(λx.t′′2)))
For t′2 = tatb, we can argue similarly as above.

A.4 Proof of Lemma 21

If n1 ⇒βµ n
′
1 and n2 ⇒βµ n

′
2, then m([n2/y]n1)⇒βµ m([n′2/y]n′1).

Proof. We prove this by induction on the derivation of n1 ⇒βµ n
′
1.

Base Case:

n⇒βµ n

By the lemma 19.

Base Case:

xi 7→ ti ∈ µ
µxi ⇒βµ m(µti)

Because y /∈ FV(µxi) and µ is local.

Step Case:

na ⇒βµ n
′
a nb ⇒βµ n

′
b

(λx.na)nb ⇒βµ m([n′a/x]n′b)

We have m((λx.[n2/y]na)[n2/y]nb) ≡ (λx.m([n2/y]na))m([n2/y]nb)
IH⇒βµ m([m([n′2/y]n′b)/x]m([n′2/y]n′a)) ≡ m([n′2/y]([n′b/x]n′a)). The last equality is by lemma 20.

Step Case:

n⇒βµ n
′

λx.n⇒βµ λx.n
′

We have m(λx.[n2/y]n) ≡ λx.m([n2/y]n)
IH⇒βµ λx.m([n′2/y]n′) ≡ m(λx.[n′2/y]n′)
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Step Case:

na ⇒βµ n
′
a nb ⇒βµ n

′
b

nanb ⇒βµ n
′
an
′
b

We have m([n2/y]na[n2/y]nb) ≡ m([n2/y]na)m([n2/y]nb)
IH⇒βµ m([n′2/y]n′a)m([n′2/y]n′b) ≡ m([n′2/y](n′an

′
b)).

A.5 Proof of Lemma 22

If n⇒βµ n
′ and n⇒βµ n

′′, then there exist n′′′ such that n′′ ⇒βµ n
′′′ and n′ ⇒βµ n

′′′.

Proof. By induction on the derivation of n⇒βµ n
′.

Base Case:

n⇒βµ n

Obvious.

Base Case:

µxi ⇒βµ m(µti)

Obvious.

Step Case:

n1 ⇒βµ n
′
1 n2 ⇒βµ n

′
2

(λx.n1)n2 ⇒βµ m([n′1/x]n′2)

Suppose (λx.n1)n2 ⇒βµ (λx.n′′1)n′′2 , where n1 ⇒βµ n′′1 and n2 ⇒βµ n′′2 . By lemma 21 and IH, we have
m([n′1/x]n′2) ⇒βµ m([n′′′1 /x]n′′′2 ). We also have (λx.n′′1)n′′2 ⇒βµ m([n′′′1 /x]n′′′2 ), where n′′1 ⇒βµ n′′′1 and
n′1 ⇒βµ n

′′′
1 and n′2 ⇒βµ n

′′′
2 and n′2 ⇒βµ n

′′′
2 .

Suppose (λx.n1)n2 ⇒βµ m([n′′2/x]n′′1), where n1 ⇒βµ n
′′
1 and n2 ⇒βµ n

′′
2 . By lemma 21 and IH, we have

m([n′1/x]n′2)⇒βµ m([n′′′1 /x]n′′′2 ) and m([n′′1/x]n′′2)⇒βµ m([n′′′1 /x]n′′′2 ).

The other cases are either similar to the one above or easy.

A.6 Proof of Lemma 23

Lemma 24. m(~µ~µt) ≡ m(~µt) and m(~µ([t2/x]t1)) ≡ m([~µt2/x]~µt1)

Proof. We can prove this using the same method as lemma 17. We will not prove it here.

Proposition 1. If a→β b, then m(a)→βµ m(b).

Proof. We prove this by induction on the derivation(depth) of a→β b. We list a few non-trial cases:

Base Case:
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(xi 7→ ti) ∈ µ
µxi →β µti

We have m(µxi) ≡ µxi →βµ m(µti).

Base Case:

(λx.t)t′ →β [t′/x]t

We have m((λx.t)t′) ≡ (λx.m(t))m(t′)→βµ m([m(t)/x]m(t′)) ≡ m([t′/x]t).

Step Case:

t→β t
′

λx.t→β λx.t
′

By IH, we have m(λx.t) ≡ λx.m(t)
IH→βµ λx.m(t′) ≡ m(λx.t′).

Step Case:

t→β t
′

µt→β µt
′

We want to show m(µt) →βµ m(µt′). If dom(µ)#FV (t), then m(µt) ≡ m(t)
IH→βµ m(t′) ≡ m(µt′). Of

course, here we assume beta-reduction does not introduce any new variable.

If dom(µ) ∩ FV (t) 6= ∅, then identify t as −̇→µ1t
′′, where t′′ does not contain any closure at head position. We

do case analyze on the structure of t′′:

Case. t′′ = xi ∈ dom(−̇→µ1) or xi /∈ dom(−̇→µ1), these cases will not arise.

Case. t′′ = λy.t1, then it must be that t′ = −̇→µ1(λy.t′1) where t1 →β t′1. So we get µ−̇→µ1t1 →β µ−̇→µ1t
′
1.

By IH(depth of µ−̇→µ1t1 →β µ−̇→µ1t
′
1 is smaller), we have m(µ−̇→µ1t1) →βµ m(µ−̇→µ1t

′
1). Thus m(µ−̇→µ1(λy.t1)) ≡

λy.m(µ−̇→µ1t1)→βµ λy.m(µ−̇→µ1t
′
1) ≡ m(µ−̇→µ1(λy.t′1)).

Case. t′′ = t1t2 and t′ = −̇→µ1(t′1t2), where t1 →β t′1. We have µ−̇→µ1t1 →β µ−̇→µ1t
′
1. By IH(depth of

µ−̇→µ1t1 →β µ−̇→µ1t
′
1 is smaller), m(µ−̇→µ1t1) →βµ m(µ−̇→µ1t

′
1). Thus m(µ−̇→µ1(t1t2)) ≡ m(µ−̇→µ1t1)m(µ−̇→µ1t2) →βµ

m(µ−̇→µ1t
′
1)m(µ−̇→µ1t2) ≡ m(µ−̇→µ1(t′1t2)). For t′′ = t1t

′
2, where t2 →β t

′
2, we can argue similarly.

Case. t′′ = (λy.t1)t2 and t′ = −̇→µ1([t2/y]t1). m(µ−̇→µ1((λy.t1)t2)) ≡ (λy.m(µ−̇→µ1t1)))m(µ−̇→µ1t2) →βµ

m([m(µ−̇→µ1t2)/y]m(µ−̇→µ1t1)) ≡ m([µ−̇→µ1t2/y]µ−̇→µ1t1) ≡ m(µ−̇→µ1[t2/y]t1)(lemma 24).
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