The Reducibility Method for Call-By-Value System F

Reorganized by Peng Fu

Last revised: Jun 20, 2010

1 Descriptions

1.1 Types

$T ::= X \mid T_1 \rightarrow T_2 \mid \Pi X. T$

1.2 Terms

$t ::= x \mid (t_1 \, t_2) \mid \lambda x. t \mid c$

1.3 Well-formed Context Γ

Let $FV(T)$ denote all the free variables of the type T, $dom(\Gamma)$ denote the type and term variables in the context Γ.

$\Gamma ::= \cdot \mid \Gamma, X : type \mid \Gamma, x : T.$

$\emptyset \text{ OK}$

$\Gamma \, OK \quad \Gamma, X : type \, OK$

$\Gamma \, OK \quad FV(T) \subseteq dom(\Gamma)$

$\Gamma, x : T \text{ OK}$

A context Γ is well-formed iff $\Gamma \, OK$. We assume all contexts in this note are well-formed.

1.4 Type assignment rules.

$\Gamma(x) = T$

$\Gamma \vdash x : T \quad T_{Var}$

$\Gamma \vdash t_1 : T_2 \rightarrow T_1 \quad \Gamma \vdash t_2 : T_2$

$\Gamma \vdash t_1 \, t_2 : T_1 \quad T_{App}$

$\Gamma, x : T_1 \vdash t : T_2$

$\Gamma \vdash \lambda x. t : T_1 \rightarrow T_2 \quad T_{Lam}$

$\Gamma, X : type \vdash t : T$

$\Gamma \vdash t : \Pi X. T \quad Univ_{Abs}$

$\Gamma \vdash t : \Pi X. T$

$\Gamma \vdash t : [U/X]T \quad Univ_{App}$
1.5 Reduction rules

Left-to-right, call-by-value reduction.

Contexts

\[C ::= \ast | v C | C t \]

Values

\[v ::= \lambda x.t | i \]

Inactive terms

\[i ::= c | (i v) \]

Reductions

\[C[(\lambda x.t) v] \leadsto C[[v/x]t] \]

2 Reducibility

2.1 Reducibility Candidates

Let \(N \) be the set of terms which have a normal form under our reduction setting. Let \(I \) be the set of all inactive terms.

Definition A reducibility candidate \(R \) is a set of terms that satisfies the following conditions:

CR 1 If \(t \in R \), then \(t \in N \) and closed.

CR 2 If \(t \in R \) and \(t \leadsto t' \), then \(t' \in R \).

CR 3 If \(t \) is a closed term, \(t \leadsto t' \) and \(t' \in R \), then \(t \in R \).

CR 4 \(I \subseteq R \).

Fact Let \(\mathcal{R} \) be the set of all reducibility candidates. \(\mathcal{R} \) is a non-empty set.

To show \(\mathcal{R} \) is non-empty, we will just show all the closed term \(t \in N \) is a reducibility candidate, which is obvious from the definition of reducibility candidate.

2.2 Reducibility Sets

As Girard said: Among all the candidates, the true reducibility candidate for \(T \) is to be found. Here we use reducibility set to find the right candidate.

Definition Let \(\phi \) be a finite function: \(FV(T) \to \mathcal{R} \). Eg. \(\phi(X) \in \mathcal{R} \). If \(\text{dom}(\phi) = \{X_1, X_2, \ldots X_n\} \), then we usually write \(\phi \) as \([R_1/X_1, \ldots R_n/X_n]\).

The reducibility set \(RED_T \phi \) is defined inductively as follows.
Assume \(t \in RED_{T_1 \rightarrow T_2} \) if \(t \in \phi(X) \).

Assume \(t \in RED_{T_1 \rightarrow T_2} \) if \(\forall u \in RED_{T_1} \Rightarrow (t u) \in RED_{T_2} \).

Assume \(t \in RED_{T_1 \rightarrow T_2} \) if \(\forall R \in \mathcal{R}, t \in RED_R[\phi(R)] \).

2.3 Reducibility Sets as Reducibility Candidates

Now we can show that our reducibility sets are indeed reducibility candidates.

CR 1 If \(t \in RED_T \), then \(t \in N \) and closed.

CR 2 If \(t \in RED_T \) and \(t \sim t' \), then \(t' \in RED_T \).

CR 3 If \(t \) is a closed term, \(t \sim t' \) and \(t' \in RED_T \), then \(t \in RED_T \).

CR 4 \(I \subseteq RED_T \).

Proof By induction on the structure of \(T \).

Base Case: \(T = X \)

CR 1–CR 4 Obvious from the definition.

Step Case: \(T = T_1 \rightarrow T_2 \)

CR 1 Assume \(t \in RED_{T_1 \rightarrow T_2} \). By IH(CR 4), \(RED_{T_1} \) is non-empty. So we can take arbitrary \(u \in RED_{T_1} \). By definition, \((t u) \in RED_{T_2} \). By IH(CR 1), \((t u) \in N, u \in N \). So \(t \in N \).

CR 2 Assume \(t \in RED_{T_1 \rightarrow T_2} \) and \(t \sim t' \). Take arbitrary \(u \in RED_{T_1} \). By definition, we know \((t u) \in RED_{T_2} \). With our reduction strategy, \((t u) \sim (t' u) \). By IH(CR 2), \((t' u) \in RED_{T_2} \). So by definition of \(RED_{T_1 \rightarrow T_2} \), \(t' \in RED_{T_1 \rightarrow T_2} \).

CR 3 Assume \(t \) is closed, \(t \sim t' \) and \(t' \in RED_{T_1 \rightarrow T_2} \). Take arbitrary \(u \in RED_{T_1} \). By definition, we know \((t u) \in RED_{T_2} \). With our reduction strategy, \((t u) \sim (t' u) \). By IH(CR 1), \(u \) is closed, thus we know \((t u) \) is closed. By IH(CR 3), \((t u) \in RED_{T_2} \). So by definition of \(RED_{T_1 \rightarrow T_2} \), \(t \in RED_{T_1 \rightarrow T_2} \).

CR 4 To show \(I \subseteq RED_{T_1 \rightarrow T_2} \), we need to show for arbitrary \(i \in I, i \in RED_{T_1 \rightarrow T_2} \). By definition of inactive terms, \(i \) is already in normal form. Take arbitrary \(u \in RED_{T_1} \). By IH(CR 1), \(u \in N \) and closed. So \((i u) \sim (i u') \), where \(u' \) is the normal form of \(u \). Thus by definition of inactive terms and IH(CR 4), \((i u') \in I \subseteq RED_{T_2} \). \((i u) \) is closed, so by IH(CR 3), \((i u) \in RED_{T_2} \). So by definition of \(RED_{T_1 \rightarrow T_2} \), \(i \in RED_{T_1 \rightarrow T_2} \). So \(I \subseteq RED_{T_1 \rightarrow T_2} \).

Step Case: \(T = \Pi.X.T \)

CR 1 Assume \(t \in RED_{\Pi.X.T} \). By the fact in section 2.1, \(\mathcal{R} \) is non-empty. Take a arbitrary reducibility candidate \(R \). By definition, \(t \in RED_T[\phi(R/X)] \). By IH(CR 1), \(t \in N \) and closed.

CR 2 Assume \(t \in RED_{\Pi.X.T} \) and \(t \sim t' \). Consider arbitrary reducibility candidate \(R \). By definition, \(t \in RED_T[\phi(R/X)] \). By IH(CR 2), \(t' \in RED_T[\phi(R/X)] \). So by definition of \(RED_{\Pi.X.T}[\phi(R/X)] \), \(t' \in RED_{\Pi.X.T} \).
CR 3 Assume t is closed, $t \sim t'$ and $t' \in RED_{T\phi}$. Take arbitrary reducibility candidate R. By definition, $t' \in RED_T\phi[R/X]$. We know that $t \sim t'$ and t is closed. So by IH(CR 3), $t \in RED_T\phi[R/X]$. So by definition, $t \in RED_{T\phi}$.

CR 4 We need to show that for arbitrary $i \in I, i \in RED_{T\phi}$. By definition, we actually need to show for arbitrary $R \in \Re, i \in RED_T\phi[R/X]$. By IH(CR 4), $I \subseteq RED_T\phi[R/X]$. So $i \in RED_T\phi[R/X]$. So it’s the case.

3 Substitution Lemma

Substitution Lemma $RED_{[V/X]\phi} = RED_T\phi[RED_V\phi/X]$.

Proof By induction on the structure of T.

Base Case: If $T = X$. We need to show $RED_V\phi = RED_X\phi[RED_V\phi/X]$. By definition, $RED_X\phi[RED_V\phi/X] = \phi[RED_V\phi/X](X) = RED_V\phi$. So it is the case.

Step Case: If $T = \Pi.Y.W$. Then we need to show $RED_{\Pi.Y.W}\phi = RED_{\Pi.Y.W}\phi[RED_V\phi/X]$. Take arbitrary $R \in \Re$ and arbitrary $t \in RED_{\Pi.Y.W}\phi$. By definition, $t \in RED_{\Pi.Y.W}\phi[R/Y]$. By IH, $RED_{\Pi.Y.W}\phi[R/Y] = RED_W\phi[R/Y, RED_V\phi/X] = RED_W\phi[R/Y, RED_V\phi/X]$.

So $t \in RED_W\phi[R/Y, RED_V\phi/X]$. By definition, $t \in RED_{\Pi.Y.W}\phi[RED_V\phi/X]$.

Now let’s prove the other direction. Take arbitrary $t \in RED_{\Pi.Y.W}\phi[RED_V\phi/X]$ and arbitrary $R \in \Re$. By definition, $t \in RED_W\phi[RED_V\phi/X, R/Y]$. By IH, $RED_W\phi[RED_V\phi/X, R/Y] = RED_{\Pi.Y.W}\phi[R/Y]$. So $t \in RED_{\Pi.Y.W}\phi[R/Y]$. By definition, $t \in RED_{\Pi.Y.W}\phi[RED_V\phi/X]$. So it is the case.

Step Case: If $T = T_1 \rightarrow T_2$. Then we need to show $RED_{(\Pi.Y.W)\phi} = RED_{T_1 \rightarrow T_2}\phi[RED_V\phi/X]$. Take arbitrary $u \in RED_{(\Pi.Y.W)\phi}$ and $t \in RED_{(\Pi.Y.W)\phi[R/Y]}$. By definition, $(t u) \in RED_{(\Pi.Y.W)\phi}$. By IH, $RED_{(\Pi.Y.W)\phi} = RED_{T_1\phi[RED_V\phi/X]}$ and $RED_{(\Pi.Y.W)\phi} = RED_{T_2\phi[RED_V\phi/X]}$. So $t \in RED_{T_1\phi[RED_V\phi/X]}$. The other direction is similar.

4 Reducibility Sets and Type assignment

Definition We define the set $[\Gamma]$ of well-typed substitutions (σ, δ) as follows:

\[
(\emptyset, \emptyset) \in []
\]

\[
(\sigma, \delta) \in [\Gamma] \quad R \in \Re \quad (\sigma, \delta) \cup \{(X, R)\}) \in [T, X : type]
\]

\[
(\sigma, \delta) \in [\Gamma] \quad FV(T) \subseteq dom(\Gamma) \quad t \in RED_T\delta
\]

\[
(\sigma \cup \{(x, t)\}, \delta) \in [\Gamma, x : T]
\]

Theorem If $\Gamma \vdash t : T$, then $\forall (\sigma, \delta) \in [\Gamma], (\sigma t) \in RED_T\delta$.

Proof By induction on the typing derivation of $\Gamma \vdash t : T$.

Base Case: The typing derivation looks like:
\[\Gamma(x) = T \]
\[\Gamma \vdash x : T \]

Because \(\Gamma(x) = T \) and context is well-formed, \(FV(T) \subseteq dom(\Gamma) \). By definition of \((\sigma, \delta) \in [\Gamma] \), we have \((x, t) \in \sigma\), where \(t \in RED_T \delta \). So \((\sigma x) = t \in RED_T \delta \).

Application Case
The typing derivation looks like:
\[
\Gamma \vdash t_1 : (T_2 \rightarrow T_1) \quad \Gamma \vdash t_2 : T_2
\]
\[
\Gamma \vdash t_1 \ t_2 : T_1
\]

We need to show that \(\sigma(t_1 \ t_2) \in RED_{T_1} \delta \). By IH, for any \((\sigma, \delta) \in [\Gamma], (\sigma \ t_1) \in RED_{(T_2 \rightarrow T_1)} \delta \) and \((\sigma \ t_2) \in RED_{T_2} \delta \). By the definition of \(RED_{(T_2 \rightarrow T_1)} \delta \), we have \((\sigma(t_1)(\sigma(t_2))) = (\sigma(t_1) \ t_2) \in RED_{T_1} \delta \).

Lambda abstract Case
The typing derivation looks like:
\[
\Gamma, x : T \vdash t : T_2
\]
\[\Gamma \vdash \lambda x . t : (T_1 \rightarrow T_2)\]

We need to prove that \(\sigma(\lambda x . t) \in RED_{\lambda x . t} \delta \). Since \(\lambda x . (\sigma t) \in N \) and closed. By definition of \(RED_{\lambda x . t} \delta \), we still need to show for arbitrary \(u \in RED_{T_1} \delta \), \((\lambda x . (\sigma t) \ u) \in RED_{T_2} \delta \). Since \(u \) is closed by CR 1, the normal form of \(u \) must be a value, which means \(u \sim v \). So we have \((\lambda x . (\sigma t)) \ u \sim (\lambda x . (\sigma t)) \ v \), and by CR 2, \(v \in RED_{T_1} \delta \). By definition of call-by-value reduction, \((\lambda x . (\sigma t)) \ v \sim \sigma[v/x] t \). Since \(v \in RED_{T_1} \delta \), and \(FV(T_1) \subseteq dom(\Gamma) \), we have \((\sigma \cup \{(x, v)\}, \delta) \in [\Gamma, x : T_1] \). By IH, \((\sigma[v/x] t) \in RED_{T_2} \delta \). Since \((\lambda x . (\sigma t) \ u) \) is closed, by CR 3, \((\lambda x . (\sigma t) \ u) \in RED_{T_2} \delta \). So by definition of \(RED_{(T_1 \rightarrow T_2)} \delta \), \((\sigma(\lambda x . t) \ = \lambda x . (\sigma t) \in RED_{(T_1 \rightarrow T_2)} \delta \).

Universal abstract Case
The typing derivation looks like:
\[\Gamma, X : type \vdash t : T\]
\[\Gamma \vdash \Pi X . t : T\]

We need to show \(\sigma(t) \in RED_{\Pi X . t} \delta \). By definition of \(RED_{\Pi X . t} \delta \), we just need to show for arbitrary \(R \in \Re, \sigma(t) \in RED_T \delta[R/X] \). By IH, for any \((\sigma, \delta \cup \{(X, R)\}) \in [\Gamma, X : type], \sigma(t) \in RED_T \delta[R/X] \). So it is the case.

Universal application Case
The typing derivation looks like:
\[\Gamma \vdash t : \Pi X . T\]
\[\Gamma \vdash t : [(U/X)]T\]

We need to show \(\sigma(t) \in RED_{[(U/X)]T} \delta \). By substitution lemma, \(RED_{[(U/X)]T} \delta = RED_T \delta[RED_U \delta/X] \). By IH, we know that \(\sigma(t) \in RED_{(\Pi X . T)} \delta \). By definition, for arbitrary \(R \in \Re, \sigma(t) \in RED_T \delta[R/X] \). We let \(R = RED_U \delta \). So it is the case.

5 Conclusion

So for any closed term \(t \), if \(\Gamma \vdash t : T \), where \(dom(\Gamma) \) only contains type variables, then \(t \in RED_T \delta \), and by CR 1, \(t \in N \).