
Type Class and Logic Programming with Term Matching

Peng Fu

November 17, 2014

1 Introduction

1.1 Logic Programming and Intuitionistic Sequent Calculus

In Section 13.4, Girard’s famous [1], he discuss the connection between LP and the intuitionistic sequent
calculus. Here I am just rephrasing what he mention in his work:

In the case of LP, we know that Prolog program can be viewed as atomic intuitionistic sequents(also
called Horn clauses) A ` B, this in LP shape would be something like B ← A. In this note, we use A⇒ B
to better connect with type class notation. The aim of LP is to prove goal, namely atomic sequents of the
form ⇒ B.

If we confine ourself to atomic sequents as proper axioms, then there is no need for the logical rules.
So we have the following:

• instances of proper axiom: A⇒ B.

• identity axioms A⇒ A with A atomic.

• cut rule.

• the structure rules.

Lemma 1. Weakening and contraction rules are redunant, identity axioms are useless.

Proposition 1. To prove a goal, we only need to use cut rule together with the proper axioms.

So we see LP is really a true intuitionistic logic with cut rule at its heart as inference engine.

1.2 Term matching v.s. Unification

Now that we know that the shape LP is intuitionistic logic with cut, let us focus now on two different
strategies to search for possible cut. Let us remind ourself the cut rule:

A⇒ E B,E ⇒ C

A,B ⇒ C
cut

Note that the E in the two premises are idenitical.

Proof Search by unification. This is LP traditionally being formulated. In this case a query P (x)
is actually searching for derivation of ∃x.P (x). We said unification has an existential commitment. The
procedure of proof search roughly speaking is: Given a goal G, try to unify G with the head formula in the
axioms, if there is an axiom’s head that is unifiable with G then we apply the substitution to the body of
the axiom, and invoke the same proof search procedure to each formula in the body.

1

Proof Search by term matching. This is the strategy LP rarely considered. In this case a query P (x)
is actually searching for derivation of ∀x.P (x). We said term matching has an universal commitment. The
procedure of proof search roughly speaking is: Given a goal G, try to match the head formula in the axioms
against G, if there is an axiom’s head that is matchable to G then we apply the substitution to the body of
the axiom, and invoke the same proof search procedure to each formula in the body.

Note that the above description is rather informal, several subtleties will be explained later for example,
parallelization and the treatment of existential variable at term-matching. Let us now see a simple example:

Given a query P (x) and axioms ⇒ Q(a) and Q(x) ⇒ P (x), where a is a constant and x is first order
unification variable. The query P (x) in LP with unification would first try to unify P (x) with P (x), which
produce identity substitution, and then replace goal P (x) with Q(x), which is unified with Q(a), thus produce
substitution [a/x], and current goal Q(x) get replaced to empty. So we found a derivation for ∃x.P (x):

⇒ Q(a) [a/x]Q(x)⇒ [a/x]P (x)

⇒ P (a)
cut

Now let use using the term-matching to do proof search, for the same example, with query P (x), we find
out that Q(x)⇒ P (x)’s head P (x) can be matched to P (x), with an identity substitution, thus we produce
a new goal Q(x), now we can’t find any axioms head that is matchable to Q(x), note that Q(a) can not
match to Q(x), so we fail to find a derivation for ∀x.P (x). We look at the axioms again it would make sense,
since there is simply not enough information for us to prove the universal ∀x.P (x).

1.3 Type Class and LP with Term Matching

In this section we want to argue that LP with term matching is more suitable for type inference with type
class compare to LP with unification. Consider the instance delaration of list:

instance Eq x => Eq (List x) where ...

This instance delaration will generate a single piece of logic program: Eq x ⇒ Eq (List x). With this
single piece of logic program, if we use unification, a query Eq(List x) will result in an infinite loop, since
x is a unification variable. But LP with term matching will simply return an answer no. Since, query on
Eq(List x) will generate a new query Eq x, which no any rule can match to, notice here x is a term-matching
variable. This is the behaviour one would expect in Haskell for example. In another word, in type class
inference, query has universal commitment.

1.4 Evidence Construction and LP with Term Matching

So the next question would be: how exactly the evidence construction (in type class) connect to LP with
term matching? We want the answer to be, they are really the same thing. Let us look at a simple example:

class Eq x where

eq :: Eq x => x -> x -> Bool

instance Eq Nat where

eq = eq_Nat

instance Eq x => Eq [x] where

eq (x:xs) (y:ys) = (eq x y) && eq xs ys

eq [] [] = True

eq _ _ = False

test = eq [1] [2]

2

Ideally, the class Eq declaration will generate the following data type and its selector:

data Eq x = Eq (x -> x -> Bool)

eq :: Eq x -> (x -> x -> Bool)

eq (Eq f) = f

What would the instance declaration of Eq Nat generated then? Actually, it will generate an evidence for
Eq Nat, namely:

e :: Eq Nat

e = Eq (eq_Nat)

For the instance declaration of Eq [x], here is an possible code that it will generate:

f :: Eq x -> Eq [x]

f e = Eq (g e)

where g e (x:xs) (y:ys) = (eq e x y) && g e xs ys

g e [] [] = True

g e _ _ = False

So after this process of code generation, we have the following LP:

e :: => Eq Nat

f :: Eq x => Eq [x]

Note that here we use e and f to as label annotate the two axioms. And since we are in intuitionistic logic
anyway, => can be read as functional arrow ->. Now we can type check test, it will invoke a query Eq

[Nat], also, it needs an evidence for Eq [Nat]. So how are we going to construct this evidence? Easy, by
using LP with term matching, we will have following derivation:

e :: ⇒ Eq Nat f :: Eq Nat⇒ Eq[Nat]

f e :: ⇒ Eq[Nat]

So by LP with term-matching, we successfully construct the evidence for Eq [Nat], which is f e.

2 LP with Term Matching

2.1 A Proof System for LP

Definition 1.
Term t ::= x | x̂ | f(t1, ..., tn)
Atomic Formula A,B,C,D ::= P (t1, ..., tn)
PreFormula F ::= A1, ..., An ⇒ A
Quantified Formula Q ::= ∀x.F
Proof Term/Evidence p, e ::= a | λa.e | e e′

Note that we call x (universal) variable, x̂ is called (existential variable) covariable, and x 6≡ x̂. We use
covariable and existential variable interchangely in this note. Note that all the terms are first order term,
for function of arity zero, we call it constant. and all the formulas are first order formula, i.e. no quantifying
over predicate. The P in P (t1, ..., tn) is called predicate. Predicate of arity zero is called proposition. We use
A to denote A1, ..., An, when we do not care about the number n, if n is zero, then we write⇒ B. Note that
B is an atomic formula, but ⇒ B is a preformula, they are different. We use ∀x.F to mean quantifying
over all the free variable and covariable in F .

Note that proof term is intended to use to denote the proof of a formula, please do not confuse them
with term. Also, proof term is higher order in the sense that it allows lambda bind variable. We use a, b, c
to denote proof term variable.

3

Definition 2 (Well-formed Formula). A preformula A1, ..., An ⇒ B is well-formed formula if coFV(B) = ∅.

Note that the above definition includes the case when n is zero. In this note when we write a preformula,
we mean it is well-formed. coFV return the set of covariables in a atomic formula and coFV(A1, ..., An) is a
shorthand for coFV(A1) ∪ ... ∪ coFV(An).

Definition 3 (Proof System).

e1 : A⇒ D e2 : B,D ⇒ C

λa.λb.(e2 b) (e1 a) : A,B ⇒ C
cut

e : ∀x.F coFV(t) = ∅
e : [t/x]F

inst
e : F

e : ∀x.F
gen

a : Q
axiom

The inst and the gen rule apply to both variable and covariable. We use λa.e to denote λa1...λan.e, when
n is zero, we it denotes just e. Similarly, e b denote e b1 ... bn, when n is zero, it denotes just e. In the cut
rule, we require a, b do not appear free in e1, e2. We use Φ to denote a set of axioms.

2.2 LP by Term Matching

Definition 4 (Term Matching). We simultaneously define A 7→σ B, where coFV(A,B) = ∅, A is matchable
to B with a substitution σ and t 7→σ t

′, t is matchable to t′ with a substitution σ.

{ti 7→σi
t′i}i∈{1,...,n}

P (t1, ..., tn) 7→σ1∪...∪σn P (t′1, ..., t
′
n)

{ti 7→σi
t′i}i∈{1,...,n}

f(t1, ..., tn) 7→σ1∪...∪σn f(t′1, ..., t
′
n) x 7→[t/x] t

Note that here we adopt some syntactic conventions to ease the reasoning about term matching. We
treat substitution as set and the union of them will invoke a syntactic comparison of two term. For example
[t1/x] ∪ [t2/x] = [t1/x] if t1 ≡ t2, else, [t1/x] ∪ [t2/x] fails; and [t1/x] ∪ [t2/y] = [t1/x, t2/y].

Definition 5 (Co-Term Matching). We simultaneously define A 7→σ̂ B, where coFV(A) 6= ∅, coFV(B) = ∅,
A is comatchable to B with a cosubstitution σ̂ and t 7→σ̂ t

′, t is comatchable to t′ with a cosubstitution σ̂.

x̂ 7→[t/x̂] t x 7→∅ t

{ti 7→σ̂i t
′
i}i∈{1,...,n}

P (t1, ..., tn) 7→σ̂1∪...∪σ̂n
P (t′1, ..., t

′
n)

{ti 7→σ̂i t
′
i}i∈{1,...,n}

f(t1, ..., tn) 7→σ̂1∪...∪σ̂n
f(t′1, ..., t

′
n)

f 6≡ g
f(t1, ..., tn) 7→∅ g(t′1, ..., t

′
n)

P 6≡ Q
P (t1, ..., tn) 7→∅ Q(t′1, ..., t

′
n)

Definition 6 (Failure of Co-term Matching). We say A fails to comatch with B if A 7→∅ B. So when we
write A 7→σ̂ B, we always mean σ̂ 6= ∅.

We will model LP with term matching by a reduction relation between sets of atomic formula. We define
σ̂ to be the substitution obtained from σ that substitute only the existential variables.

Definition 7 (Reduction by Term Matching). Let Φ denote the set of axioms, we define the following
relation.

• cut reduction

Φ ` {A1, ..., Ai, ..., An} a {A1, ..., σB1, ..., σBm, ..., An}, if coFV(A1, ..., Ai, ..., An) = ∅, and there
exists a : ∀x.B1, ..., Bn ⇒ C ∈ Φ such that C 7→σ Ai.

• existential reduction

Φ ` {A1, ..., Ai, ..., An} a {σ̂A1, ..., σ̂Ai, ..., σ̂An}, if there exists an Ai such that coFV({Ai}) 6= ∅,
and there is an a : ∀x.B1, ..., Bn ⇒ C ∈ Φ and Ai 7→σ̂ C.

4

2.3 Soundness

Definition 8. We say Φ ` {A} is reducible to empty set if there exists a reduction path from {A} to ∅.

Lemma 2 (Orthogonal). The cut reduction and the existential reduction are orthogonal, i.e. given a set of
atomic formulas and a set of axioms, one can only choose one reduction to reduce the set of formulas at a
time, not both.

Lemma 3 (Finiteness of Existential Reduction). Existential reduction is finite, i.e. there can not be an
infinite reduction path consisted of only exitential reductions.

Proof. We know that the head of an axiom a : ∀x.B1, ..., Bn ⇒ C, namely, C, can not contain any existential
variables, by well-formness; so existential reduction strictly decrease the number of existential variables.

Lemma 4. If Φ ` {A1, ..., An} is reducible to emptyset, where coFV(A1, ..., Ai, ..., An) = ∅ , then there exists
proofs e1 : ∀x.⇒ A1, ..., en : ∀x.⇒ An given axioms Φ.

Proof. By induction on the length of the reduction.

• Base Case. Suppose the length is one, namely, Φ ` {A} a ∅. It must be the cut reduction, thus there
exists (a : ∀x.⇒ C) ∈ Φ, such that C 7→σ A. So we have a :⇒ σC by the inst rule, thus a :⇒ A, hence
a : ∀x.⇒ A by the gen rule.

• Step Case. Suppose Φ ` {A1, ..., Ai, ..., An} a {A1, ..., σB1, ..., σBm, ..., An} ... ∅, where a :
∀x.B1, ..., Bn ⇒ C and C 7→σ Ai.

– If coFV(B1, ..., Bm) = ∅, then by IH, we know that there exists proofs e1 : ∀x. ⇒ A1, ..., p1 :
∀x.⇒ σB1, ..., pm : ∀x.⇒ σBm, ..., en : ∀x.⇒ An . We can construct a proof ei = a p1 ...pm with
ei : ∀x. ⇒ Ai, by first use inst to instantiate the quantifiers of a, then applying the cut rule m
times. So we have a proof for each of Ai in {A1, ..., An}.

– If coFV(B1, ..., Bm) 6= ∅, by lemma 2, 3, we know the shape of the reduction must be of the form

Φ ` {A1, ..., Ai, ..., An} a {A1, ..., σB1, ..., σBm, ..., An} ∗ {A1, ..., δ̂σB1, ..., δ̂σBm, ..., An}
... ∅, where the domain of δ̂ are exitential variables, ∗ is finite existential reductions and
coFV(δ̂σB1, ..., δ̂σBm) = ∅. Since a : ∀x.B1, ..., Bn ⇒ C, by inst rule we have a : δ̂B1, ..., δ̂Bn ⇒
C, we have this because C does not contain existential variables. We apply inst rule again
with the σ in C 7→σ Ai, so we have a : σδ̂B1, ..., σδ̂Bn ⇒ σC, thus a : σδ̂B1, ..., σδ̂Bn ⇒ Ai.
We know that δ̂σ = σδ̂, so a : δ̂σB1, ..., δ̂σBn ⇒ Ai. By IH, we know there exists proofs
e1 : ∀x. ⇒ A1, ..., p1 : ∀x. ⇒ δ̂σB1, ..., pm : ∀x. ⇒ δ̂σBm, ..., en : ∀x. ⇒ An. So applying the cut
rule m times give us ei = a p1...pm and ei : ∀x.⇒ Ai.

Theorem 1 (Soundness). If Φ ` {A} is reducible to emptyset, where coFV(A) = ∅ , then there exists proofs
e : ∀x.⇒ A given axioms Φ.

Proof. By lemma 4. Here we want to emphasis that since we have a constructive proof, we know how to
actually construct such proof e.

2.4 Completeness

Definition 9. For substitution σ, δ whose domain are variable, we define δ · σ by induction on length of σ:

• δ · [] = []

• δ · ([t/x] ∪ σ) = [δt/x] ∪ δ · σ

5

Lemma 5. δ · σ(A) = δ(σA) and σ̂(δA) = δ(σ̂A).

Lemma 6.

• If A 7→σ B, then A 7→δ·σ δB.

• If t 7→σ t
′, then t 7→δ·σ δt

′.

Lemma 7. Let δ be a substitution whose domain are variables.

• If A 7→σ̂ B, then δA 7→σ̂ B.

• If t 7→σ̂ t
′, then δt 7→σ̂ t

′.

Lemma 8. If Φ ` {A1, .., Ai, ..., An} a {A1, ..., σB1, ..., σBm, ..., An} with a : ∀x.B1, ..., Bm ⇒ C and
C 7→σ Ai. Then for a substitution δ where the domain of δ are variable, then Φ ` {δA1, .., δAi, ..., δAn} a

{δA1, ..., δσB1, ..., δσBm, ..., δAn}.

Proof. By lemma 6, we know that C 7→σ Ai implies C 7→δ·σ δAi, thus by cut reduction we have Φ `
{δA1, .., δAi, ..., δAn} a {δA1, ..., δσB1, ..., δσBm, ..., δAn}.

Lemma 9. Suppose Φ ` {A1, ..., Ai, ..., An} a {σ̂A1, ..., σ̂Ai, ..., σ̂An}, if there exists an Ai such that
coFV({Ai}) 6= ∅, and there is an a : ∀x.B1, ..., Bn ⇒ C ∈ Φ and Ai 7→σ̂ C. For a substitution δ with domain
of variables, we have Φ ` {δA1, ..., δAi, ..., δAn} a {δσ̂A1, ..., δσ̂Ai, ..., δσ̂An}.

Proof. By lemma 7, we know that δAi 7→σ̂ C, so by existential reduction, we have Φ ` {δA1, ..., δAi, ..., δAn} a

{σ̂δA1, ..., σ̂δAi, ..., σ̂δAn} ≡ {δσ̂A1, ..., δσ̂Ai, ..., δσ̂An}.

Lemma 10. If Φ ` {C} ∗ {B,D} and Φ ` {D} ∗ {A}, then Φ ` {C} ∗ {B,A}. Note that
coFV(D) = ∅.

We use [∀x].F to denote F or ∀x.F .

Lemma 11. If there exists a proof e : [∀x].A1, ..., An ⇒ B and coFV(A1, ..., An) = ∅, given axioms Φ, then
Φ ` {B} ∗ {A1, ..., An}.

Proof. By induction on the derivation of the proof e : [∀x].A1, ..., An ⇒ B.

• Base Case.

e : ∀x.A1, ..., An ⇒ B

By cut reduction we have the result.

• Step Case.

e : A1, ..., An ⇒ B

e : ∀x.A1, ..., An ⇒ B

This case is directly by IH.

• Step Case.

e : ∀x.A1, ..., An ⇒ B

e : σA1, ..., σAn ⇒ σB

By IH, we know that Φ ` {B} ∗ {A1, ..., An}. By lemma 8, 9, we know that Φ ` {σB} ∗
{σA1, ..., σAn}.

• Step Case.

e1 : A⇒ D e2 : B,D ⇒ C

λa.λb.(e2 b) (e1 a) : A,B ⇒ C
cut

We assume coFV(A,B) = ∅, so we can apply IH to the two premises, we get Φ ` {C} ∗ {B,D} and
Φ ` {D} ∗ {A}. By lemma 10, we have Φ ` {C} ∗ {B,A}.

6

Note: the lemma above will not hold if coFV(A1, ..., An) 6= ∅.

Theorem 2 (Completeness). If there exists a proof e : ∀x.⇒ A given axioms Φ, then Φ ` {A} is reducible
to ∅.

Proof. By lemma 11.

2.5 What does this mean?

• We have a foundation for LP with term matching.

• We give a true operational view on how to understand the ⇒ in intuitionistic sequent A⇒ B, namely,
Φ ` {B} ∗ {A}.

• Our soundness theorem will enable us to construct proof/evidence once we know a query is reducible
to empty set.

• We now understand type class better.

• Our proof system is very similar to intuitionistic sequent just with cut rule and extrange rule, but our
treatment of first order quantifier is of a natural deduction style. The benefits with this formulation
is that we have a term assignment system(for producing evidence) and we have an good operational
semantics.

References

[1] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge University Press, New
York, NY, USA, 1989.

7

	Introduction
	Logic Programming and Intuitionistic Sequent Calculus
	Term matching v.s. Unification
	Type Class and LP with Term Matching
	Evidence Construction and LP with Term Matching

	LP with Term Matching
	A Proof System for LP
	LP by Term Matching
	Soundness
	Completeness
	What does this mean?

