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Abstract

We present an approach to develop folds for nested data types using dependent types. The benefits
of our approach are: (1) The definitions of folds no longer depend on maps. (2) The map functions for
nested data types can now be defined using folds. (3) The induction principles for nested data types can
be derived from the definitions of folds. (4) The programs defined by dependently typed folds subject to
formal verification.
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1 Introduction
Consider the following list data type and its fold function in Agdaﬂ

data List (a : Set) : Set where
Nil : List a
Cons : a -> List a -> List a

fold : {ap : Set} >p -> (a ->p ->p) -> List a > p
fold {a} {p} base step Nil = base
fold {a} {p} base step (Cons x xs) = step x (fold {a} {p} base step xs)

The key word Set is a kind that classifies types. The function fold has two implicit type arguments, they correspond
to the implicitly quantified type variables a and p in the type of fold. In Agda, implicit arguments can be supplied
explicitly using braces (e.g. {a}), sometimes they can be omitted.

The function fold is defined by structural recursion and it is terminating. Once fold is defined, we can use it
to define terminating functions such as the following map and sum. This is similar to using the iterator to define
terminating arithmetic functions in System T [14] §7].

map : {a b : Set} -> (a -> b) -> List a -> List b
map f 1 = fold Nil (\ a r -> Cons (f a) r) 1

sum : List Nat -> Nat

sum 1 = fold Z (\ xr > add xr) 1

When defining the map function, if the input list 1 is empty, then we just return Nil, so the first argument for
fold is Nil. If the input list 1 is of the form Cons a as, then we want to return Cons (f a) (map f as), so the
second argument for fold is \ a r -> Cons (f a) r, where r represents the result of the recursive call map f as.
The function sum is defined similarly.

We can generalize the type of fold to obtain the following induction principle for list.

ind : {a : Set} {p : List a -> Set} -> p Nil ->

((x : a) => {xs : List a} -> p xs -> p (Cons x xs)) -> (1 : List a) > p 1
ind {a} {p} base step Nil = base
ind {a} {p} base step (Cons x xs) = step x {xs} (ind {a} {p} base step xs)

1 Agda documentation: https://agda.readthedocs.io/en/v2.5.3/.


https://agda.readthedocs.io/en/v2.5.3/

Ignoring the implicit arguments, the definition of ind is the same as fold. Compared to the type of fold, the type
of ind is more general as the kind of p is generalized from Set to List a -> Set, we call such p a property of the
list. The second argument step for ind has an implicit term argument {xs : List a}. The induction principle ind
states that to prove a property p holds for any list 1, one has to first prove that Nil has the property p, and then
assuming p holds for any list xs as the induction hypothesis, prove that p holds for Cons x xs for any x.

We can now use the induction principle ind to prove that map behaves the same as the usual recursively defined
map’ (lemmal).

map’ : {a b : Set} -> (a -> b) -> List a -> List b
map’ f Nil = Nil
map’ f (Cons x xs) = Cons (f x) (map’ f xs)

lemmal : fa b : Set} -> (f : a ->b) -> (1 : List a) -> map £ 1 == map’ f 1
lemmal {a} {b} £ 1 =
ind {a} {\ y -> map f y == map’ f y} refl (\ x {xs} ih -> cong (Cons (f x)) ih) 1

refl : {a : Set} > {x : a} -> x == x
cong : {fab:Set} >{mn:al > :a->b) >m==n->fm==f£fn

In the proof of lemmal, we use a notion of equality == with the tactic refl to construct a reflexivity proof and
the tactic cong to construct a congruence proof. The key to use the induction principle ind is to specify what kind
of property on list we want to prove. In this case the property we have in mind is \ y -> map f y == map’ £ y.
Thus the type of ind {a} {\ y -> map f y == map’ f y } is the following.

map £ Nil == Nil ->
((x : a) => {xs : List a} -> map f xs == map’ f xs ->

map f (Cons x xs) == Cons (f x) (map’ f xs)) —->
(1 : List @) > map £ 1 == map’ £ 1

The first two arguments for the above type correspond to the base case and the step case in the inductive proof.
For the base case, we just need refl. For the step case, the induction hypothesis ih has the type map f xs ==
map’ f xs, we just need to show map f (Cons x xs) == Cons (f x) (map’ f xs). Since map f (Cons x xs) can
be evaluated to Cons (f x) (map f xs), we finish the proof by a congruence on the induction hypothesis, so cong
(Cons (f x)) ih is the proof for map £ (Cons x xs) == Cons (f x) (map’ f xs).

To summarize, the fold functions for regular data types (i.e. non-nested inductive data types such as List and
Nat) are well-behaved in the following sense. (1) The fold functions are defined by well-founded recursion. (2) The
fold functions can be used to define a range of terminating functions (including maps). (3) The types of the fold
functions can be generalized to the corresponding induction principles. Unfortunately, these properties of folds for
regular data types does not directly carry over to nested data types. Consider the following nested data type.

data Bush (a : Set) : Set where
NilB : Bush a
ConsB : a -> Bush (Bush a) -> Bush a

According to Bird and Meertens [4, §1], at each step down the list, entries are bushed. For example, a value of type
Bush Nat can be visualized as the following.

bushl = [ 4, -- Nat
(s, [51]1, [[3]111, -- Bush Nat

LL71, 01, LCCL7]1111, -- Bush (Bush Nat)

[LLC1, LCL01111]1 --Bush (Bush (Bush Nat))

] -- Bush (Bush (Bush (Bush (Bush Nat))))

We can use general recursion to define the following map function and fold function.



hmapB : {b ¢ : Set} -> (b -> ¢) -> Bush b -> Bush ¢
hmapB f NilB = NilB
hmapB f (ConsB x xs) = ConsB (f x) (hmapB (hmapB f) xs)

hfoldB : {a : Set} -> {p : Set -> Set} —>
({b : Set} > pb) > ({b : Set} > b >p (pb) ->pb) ->Bush a ->p a
hfoldB base step NilB = base
hfoldB base step (ConsB x xs) =
step x (hfoldB base step (hmapB (hfoldB base step) xs))

The fold function hfoldB for the nested data type Bush is called a higher-order fold in the literature (e.g. [6],
[15]). Observe that the type variable p in hfoldB is generalized to kind Set -> Set.

The higher-order fold hfoldB has the following problems. (1) The definition of hfoldB requires the map function
hmapB, and hmapB can not be defined from hfoldB. (2) For both hmapB and hfoldB, Agda’s termination checker fails
because the use of recursion in both cases are not well-founded. For example, in the second case of hmapB, the
outer recursive call of hmapB is on the structurally smaller argument xs, but there is no such indication for the inner
recursive call (hmapB f). (3) Although possible (see Section @, it is not immediately clear how hfoldB can be used
to define functions such as a summation of all the entries in Bush Nat. The most obvious way is to instantiate p
with \ x -> Nat for hfoldB, thus hfoldB {Nat} {\ x -> Nat} has type ({b : Set} -> Nat) -> ({b : Set} ->
b -> Nat -> Nat) -> Bush Nat -> Nat. We will have to provide a function of the type ({b : Set} -> b -> Nat
-> Nat) as the second argument for hfoldB {Nat} {\ x -> Nat}. Such function would need to be defined for any
type b, so it cannot be useful for defining the summation. (4) Unlike the induction principle for list, it is not clear
how to obtain an induction principle for Bush from the higher-order fold hfoldB.

As aresult, in the pioneer works of generalized folds for nested data types by Bird and Paterson ([6], [5]), they have
to define generalized folds using maps, and both generalized folds and map functions are defined by general recursion.
As for the formal verification, nested data types such as Bush can not be declared directly in the dependently typed
language Cocﬂ In Agda, although we can declare nested data types such as Bush, we cannot easily program and
reason about higher-order folds. This is because: (1) The Agda termination checker fails to recognize the termination
of higher-order folds defined from general recursion. (2) Currently there is no natural formulation of induction
principles for nested data types similar to the ones for regular data types.

1.1 Contributions of the paper

We present an approach to define fold functions for nested data types using dependent types inside the total de-
pendently typed language Agda. We call such folds dependently typed folds. Dependently typed folds are defined by
well-founded recursion, hence their termination is confirmed by Agda. Map functions and many other terminating
functions can be defined directly from the dependently typed folds. Moreover, the higher-order folds (such as hfoldB)
are definable from the dependently typed folds. From the definitions of dependently typed folds, we can also ob-
tain the corresponding induction principles. Thus we can formally reason about the programs involving nested data
types in a total dependently typed language. In this paper, we illustrate these ideas by focusing on several concrete
examples, we also show how to obtain dependently typed folds in general.

The main technical contents of the paper are the following: In Section[2} using the Bush data type, we develop the
first example of dependently typed folds. In Section [3]and Section[d] as a case study, we show how to define, program
and reason about dependently typed folds in Agda using two well-known nested data types from the literature.
In Section |p| we give an example to show how to obtain dependently typed folds in general, and we show how
to specialize dependently typed folds to the higher-order folds. In Section @, we discuss related work. In Section
[ we discuss future work and conclude the paper. All the detailed programs for each section are available at
https://github.com/Fermat/dependent-fold and checked by Agda 2.5.3.

2 A development of dependently typed folds in a total type theory
via the Bush data type

Let us continue the consideration of the Bush data type. The following is the result of evaluating hmapB f bushi,
where £ : Nat -> b for some type b.

2Coq user manual: https://coq.inria.fr/refman/
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[ £ 4, - b
(£f8, [£51, [[£3111, -- Bush b
LL£71, 01, LLL£71111, --Bush (Bush b)
CLCI, [LL£f0]1111 -- Bush (Bush (Bush b))

] -- Bush (Bush (Bush (Bush (Bush b))))

In order to define the map function for Bush Nat, we need to already have the map functions defined for Bush” Nat
for all n > 0, which seems paradoxical. A way out is to define a general map function for Bush”, for all n > 0. First
we define Bush” as the following NBush.

NTimes : (Set -> Set) -> Nat -> Set -> Set
NTimes p Z s = s

NTimes p (S n) s = p (NTimes p n s)

NBush : Nat -> Set -> Set

NBush = NTimes Bush

The function NTimes is a type level function defined by pattern-matching on the natural number n. The function
call NTimes p n a returns a type of the form p™ a. We now define the following map function mapB for Bush”, where
mapB (S Z) corresponds to the map function for Bush a.

mapB : {a b : Set} -> (n : Nat) -> (a -> b) -> NBush n a -> NBush n b
mapB Z f x = f x

mapB (S n) f NilB = NilB

mapB (S n) f (ConsB x xs) = ConsB (mapB n f x) (mapB (S8 (S n)) f xs)

The recursive definition of mapB is well-founded as all the recursive calls are on the components of the constructor
ConsB. The Agda termination checker accepts this definition of mapB. The definition of mapB confirms a general
principle in theorem proving: proving a more general lemma may be easier than proving a concrete one. We will use
this principle again and again when verifying programs involving nested data types.

From now on, instead of considering the concrete data type Bush, we will focus on its generalized counterpart
NBush n. Looking at the definition of mapB, we can view NBush n as a kind of abstract indexed data type that has
three constructors. The first constructor has type a -> NBush Z a, corresponding to the first case of mapB. The
second constructor NilB has type NBush (S n) a, and the third constructor ConsB has type NBush n a -> NBush (S
(S n)) a -> NBush (S n) a.

We now give the following dependently typed fold for the abstract indexed data type NBush n.

foldB : {a : Set} -> {p : Nat -> Set} ->
(a >p 2Z) >
((n : Nat) -> p (S n)) ->
((n: Nat) =>pn->p (8 (Sn) ->p (Sn)) —>
(n : Nat) -> NBushna ->pn
foldB base nil cons Z x = base x
foldB base nil cons (S n) NilB = nil n
foldB base nil cons (S n) (ConsB x xs) =
cons n (foldB base nil cons n x) (foldB base nil cons (S (S n)) xs)

The dependently typed fold £01dB captures the most general form of computing/traversal on the abstract data
type NBush n a. The definition of fo1dB is well-founded because all the recursive calls of £01dB are on the components
of ConsB. Observe that the definition of f01dB has the same structure as mapB. We can redefine mapB using foldB.

mapB : {a b : Set} -> (n : Nat) -> (a -> b) -> NBush n a -> NBush n b
mapB {a} {b} n £ 1 =
foldB {a} {\ n -> NBush n b} £ (\ n -> NilB) (\ n -> ConsB) n 1

The dependently typed fold £01dB allows us to directly define other terminating functions such as the summation
of all the entries in Bush Nat and the length function for Bush.



sumB : Bush Nat -> Nat
sumB = foldB {Nat} {\ n > Nat} (\ x > x) (\'n > Z) (\ n -> add) (S 2)

lengthB : {a : Set} -> Bush a -> Nat
lengthB {a} = foldB {a} {\ n > Nat} (\ x > Z) (\'n > Z) (\nrlr2->8Sr2) (S12)

Comparing the dependently typed fold f01dB and the higher-order fold hfoldB in Section[I} we can see that foldB
does not depend on map, and mapB can be defined from foldB. The termination of foldB is obvious and it can be
used to define other terminating functions. Moreover, the higher-order fold hfoldB is an instance of the dependently
typed fold foldB, as we can define hfoldB using foldB.

hfoldB : {a : Set} -> {p : Set -> Set} —>
({b : Set} > pb) > ({b : Set} > b >p (pb) ->pb) ->Bush a ->p a
hfoldB {a} {p} base step =
foldB {a} {\ n -> NTimes p n a} (\ x -> x) (\ n -> base) (\ n -> step) (S Z)

Last but not least, we can generalize the type of dependently typed fold foldB to obtain the following induction
principle indB, just like how we obtain the induction principle for List from its fold function.

indB : {a : Set} -> {p : (n : Nat) -> NBush n a -> Set} ->
((x :a) >p2Zzx) >
((n : Nat) -> p (S n) NilB) ->
((n : Nat) -> {x : NBush n a} -> {xs : NBush (S (S n)) a} ->
pnx ->p (S (Sn)) xs ->p (Sn) (ConsB x xs)) —>
(n : Nat) -> (xs : NBush n a) -> p n xs
indB base nil cons Z xs = base xs
indB base nil cons (S n) NilB = nil n
indB base nil cons (S n) (ConsB x xs) =
cons n (indB base nil cons n x) (indB base nil cons (S (S n)) xs)

Observe that the definition of indB is the same as foldB, and the type variable p is generalized to kind (n :
Nat) -> NBush n a -> Set. The type of indB is specifying how to prove a property p holds for any xs of type NBush
n a by induction. More specifically, for the first base case, we need to show p holds for any x of type NBush Z a
(which equals a), hence p Z x. For the second base case, we need to show p holds for NilB of type NBush (S n) a.
For the step case, we assume p holds for x of type NBush n a and xs of type NBush (S (S n)) a as the inducton
hypotheses, we need to show p holds for ConsB x xs.

With indB, we can now prove properties about mapB and foldB. In the following we prove that mapB has the usual
identity and composition properties.

identity : {a : Set} -> (n : Nat) -> (y : NBushn a) -> y ==mapBn (\ x -> x) y
identity {a} n y =

indB {a} {\ n v -> v == mapB n (\ x -> x) v} (\ x -> refl)

(\ n -> refl) (\ n {x} {xs} ih1l ih2 -> cong2 ConsB ihl ih2) n y

mapCompose : {a b c : Set} -> (n : Nat) > (f : b >c) > (g : a -> b) ->
(x : NBush n a) -> mapB n (compose f g) x == mapB n f (mapB n g x)
mapCompose {a} {b} {c} n f g x =
indB {a} {\ n v -> mapB n (compose f g) v == mapB n f (mapB n g v)}
(\ v => refl) (\ n -> refl) (\ n {x1} {xs} ihl ih2 -> cong2 ConsB ihl ih2) n x

cong2 : {a b c : Set} -> {m1 nl : a} -> {m2 n2 : b} >
(f :a->b->c) >ml ==n1l >m2==1n2 ->fmlm2==+Fnln2

We note that the usual way of proving things in Agda is by recursion, and relying on the Agda termination checker
to prove termination. However, since our purpose is to show the strength of induction principles such as indB, we do
not use recursion at all. All the proofs in this paper are by induction principles.

Let us take a closer look at identity. It is a general statement of mapB n (includes the special case mapB (S Z)).
It is also about a property of y : NBush n a, i.e. y has the property of being equal to mapB n (\ x -> x) y for



any n. So we instantiate the property p in indB with \ n v -> v == mapB n (\ x -> x) v. Thus the type of indB
{a} {\ n v -=> v == mapB n (\ x -> x) v} is the following.

((x : a) >x==mapB Z (\ x > x) x) >
((n : Nat) -> NilB == mapB (8 n) (\ x -> x) NilB) ->
((n : Nat) -> {x : NBush n a} -> {xs : NBush (S (S n)) a} —>

x ==mapB n (\ x -> x) x >

xs == mapB (8 (S n)) (\ x -> x) xs >

ConsB x xs == mapB (S n) (\ x -> x) (ConsB x xs)) ->
(n : Nat) -> (xs : NBush n a) -> xs == mapB n (\ x -> x) xs
We need to provide three arguments for indB {a} {\ n v -=> v == mapB n (\ x -> x) v} to obtain a proof of the
theorem (n : Nat) -> (xs : NBush n a) -> xs == mapB n (\ x -> x) xs. These three arguments correspond
to the three cases in the inductive proof, i.e. a case for NBush Z a, a case for NilB and a case for ConsB x xs.
In the third case for ConsB x xs, we have two induction hypotheses, i.e. ih1 : x == mapB n (\ x -> x) x and
ih2 : xs == mapB (S (8 mn)) (\ x -> x) xs. A congruence on these two induction hypotheses, i.e. cong2 ConsB

ih1 ih2, gives us the proof for ConsB x xs == mapB (S n) (\ x -> x) (ConsB x xs). The proof of mapCompose is
similar to the proof of identity.

Recall that Agda does not accept the general recursive definition of hmapB in Section[l} Now that we understand
that hmapB is just mapB (S Z), we can use the induction principle indB to show that mapB (S Z) has the same
computational behavior as hmapB.

mapNilB : forall {a b : Set} -> (f : a -> b) -> mapB (8 Z) f NilB == NilB
mapNilB {a} {b} f = refl

mapConsB : {a b : Set} -> (f : a -> b) -> (x : a) -> (xs : Bush (Bush a)) ->
mapB (S Z) f (ConsB x xs) == ConsB (f x) (mapB (S Z) (mapB (S Z) f) xs)
mapConsB {a} {b} f x xs = cong (ConsB (f x)) (addMap {a} {b} (S Z) f xs)

addMap : {a b : Set} -> (n : Nat) -> (£ : a => b) -> (x : NBush (add n n) a) ->
mapB (add n n) f x == mapB n (mapB n f) x
addMap {a} {b} n f x =
indB {NBush n a} {\ m v -> mapB (add m n) f v == mapB m (mapB n f) v}
(\ x > refl) (\ n -> refl)
(\ n {x} {xs} ih1l ih2 -> cong2 ConsB ihl ih2) n x

The theorem mapNilB corresponds to the first case in the general recursive definition of hmapB, the theorem mapConsB
corresponds to the second case. To prove mapConsB, we need to prove a more general lemma addMap. The proof of
lemma addMap is by standard induction, however, coming up with the correct lemma addMap requires some effort.

Similarly, we can use indB to show that the hfoldB defined from foldB behaves the same as the one defined by
general recursion. The following theorem foldBNilB corresponds to the first case in the general recursive definition,
and theorem foldBConsB corresponds to the second case. We elide the nontrivial proof of the lemma lemmConsB
(which uses indB).

foldBNilB : {a : Set} -> {p : Set -> Set} -> (base : {b : Set} -> p b) —->
(step : {b : Set} > b ->p (pb) ->pb) >
hfoldB {a} {p} base step NilB == base

foldBNilB base step = refl

foldBConsB : {a : Set} -> {p : Set -> Set} -> (base : {b : Set} -> p b) —->
(step : {b : Set} > b ->p (pb) ->pb) >
(x : a) -> (xs : Bush (Bush a)) —>
hfoldB base step (ConsB x xs) ==
step x (hfoldB base step (mapB (S Z) (hfoldB base step) xs))
foldBConsB {a} {p} base step x xs =
cong (step x) (lemmConsB {a} {p} (S Z) base step xs)



Finally, we use the induction principle indB to prove that for any function £, if £ behaves according to fo1dBNilB
and foldBConsB, i.e. £ base step NilB == base and f base step (ConsB x xs) == step x (f base step (mapB
(S Z) (f base step) xs), then f is equal to hfoldB. This statement can be formalized as the following.

uniqueness : (f : {a : Set} -> {p : Set -> Set} ->
({b : Set} -> p b) >
({b : Set} > b ->p (pb) =>pb) ->Bush a ->p a) —>

(hptl : {a : Set} {p : Set -> Set} -> (base : {b : Set} -> p b) ->
(step : {b : Set} > b >p (pb) ->pb) —>
f {a} {p} base step NilB == base) ->

(hp2 : {a : Set} {p : Set -> Set} -> (base : {b : Set} -> p b) —>
(step : {b : Set} > b ->p (pb) ->pb) >
(x : a) -> (xs : Bush (Bush a)) ->
f base step (ConsB x xs) ==
step x (f base step (mapB (S Z) (f base step) xs))) ->

{a : Set} -> {p : Set -> Set} —>
(base : {b : Set} -> p b) ->
(step : {b : Set} -> b ->p (p b) -> p b) -> (bush : Bush a) ->
f {a} {p} base step bush == hfoldB {a} {p} base step bush
uniqueness f hpl hp2 {a} {p} base step bush =
indB {a} {\ n v -> 1lift n (f base step) v == 1lift n (hfoldB base step) v} ...

lift : {a : Set} {p : Set -> Set}

(n : Nat) -> (g : {a : Set} -> Bush a -> p a) -> NBush n a -> NTimes p n a
lift {a} {p} Z gx =x
1ift {a} {p} (S n) g x = g (mapB (S 2) (1ift {a} {p} n g) x)

The proof of uniqueness is nontrivial and requires all the lemmas and theorems about foldB and mapB we seen
so far together with the helper function 1ift. The complete proof can be found in the supplementary material. The
key idea of the proof is that instead of proving the concrete theorem (bush : Bush a) -> f base step bush ==
hfoldB base step bush, we use 1ift to prove a more general one, namely, (n : Nat) -> (bush : NBush n a)
-> lift n (f base step) bush == 1lift n (hfoldB base step) bush.

2.1 The indexed representations

We now show that the nested data type Bush is in fact definable even in a core type theory without nested data types.
Indeed, we can define NBush directly as a non-nested indexed data type BushN (called the indexed representation).
The nested data type Bush is recoverable as BushN (S Z). This opens the possibility of a user defined nested data
type in a surface language, then it can be automatically desugared to a non-nested definition in the underlying type
theory while still providing the fold function and induction principle. For example, the total dependently typed
language Coq does not accept nested data types such as Bush due to the failure of Coq’s strict positivity check. So
in this case we can work with the indexed representations instead.
Consider the following indexed data type BushN.

data BushN : Nat -> Set -> Set where
Base : {a : Set} -> a -> BushN Z a
NilBN : {a : Set} -> {n : Nat} -> BushN (S n) a
ConsBN : {a : Set} -> {n : Nat} ->
BushN n a -> BushN (S (S n)) a -> BushN (S n) a

The BushN data type is indexed by the natural numbers. A value of type BushN Z a is of the form Base x, where x
a. A value of type BushN (S n) a can be either a NilBN, or ConsBN x xs with x : BushN n a and xs : BushN
(S (S n)) a
The following are the fold function and the induction principle for BushN.



foldBN : {a : Set} -> {p : Nat -> Set} ->
(a->p2) >
((n : Nat) -=> p (S n)) ->
((n: Nat) >pn->p (8 (Sn)) ->p (Sn)) —>
(n : Nat) -> BushN na ->pn
foldBN base nil cons Z (Base x) = base x
foldBN base nil cons (S n) NilBN = nil n
foldBN base nil cons (S n) (ConsBN x xs) =
cons n (foldBN base nil cons n x) (foldBN base nil cons (S (S n)) xs)

indBN : {a : Set} -> {p : (n : Nat) -> BushN n a -> Set} ->
((x : a) -> p Z (Base x)) —>
((n : Nat) -> p (8 n) NilBN) ->
((n : Nat) -> {x : BushN n a} -> {xs : BushN (S (S n)) a} —>
pnx->p (8 (Sn)) xs ->p (S n) (ConsBN x x8)) —->
(n : Nat) -> (xs : BushN n a) -> p n xs

The definition of indNB is exactly the same as foldBN. Notice that foldBN is almost the same as foldB except it
actually pattern-matches on all the constructors of the index data type BushN n a. We can convert back and forth
between NBush n a and BushN n a.

to : {a : Set} -> (n : Nat) -> NBush n a -> BushN n a
to {a} n s =
foldB {a} {\ n -> BushN n a} Base (\ n -> NilBN) (\ n -> ConsBN) n s
from : {a : Set} -> (n : Nat) -> BushN n a -> NBush n a
from {a} n s =
foldBN {a} {\ n -> NBush n a} (\ x -=> x) (\ n -> NilB) (\ n -> ConsB) n s

toFrom : {a : Set} -> (n : Nat) -> (x : NBush n a) -> from n (to n x)
fromTo : {a : Set} -> (n : Nat) -> (x : BushN n a) -> to n (from n x)

= X

X

In principle, all the programs and theorems about NBush n a can be converted to BushN n a. Please see the supple-
mentary material for an example.

2.2 The Church encodings of the indexed representations

We can work with the indexed representations via their Church encodings in the Calculus of Constructions [9], a
minimal total dependent type system that does not provide primitive data types and recursion. As an example, we
now define CNBush, the Church-encoded version of BushN.

CNBush : Nat -> Set -> Set
CNBush n a = {p : Nat -> Set} ->
(a->p2) >
((n : Nat) -> p (S n)) —->
(@ : Nat) >pn->p(S(Sn)) ->p(Sn)) >pn

The definition of CNBush is impredicative. The kind of CNBush should be Nat -> Set ->Seti, not Nat -> Set ->
Set (recall that Set in Agda is a shorthand for Seto), due to the quantification of p : Nat -> Set. Since Agda
does not support impredicative polymorphism, we enable this feature by using the unsafe --type-in-type flag. In
a language that supports impredicativity (e.g. Coq), defining the Church-encoded CNBush is not a problem, we also
provide the Coq version of CNBush in the supplementary material.

To obtain the Church-encoded BushN, we first identify the type CNBush n a with the type of foldBN, then we
define the three constructors of CNBush by imitating the three cases of foldBN.

cbase : {a : Set} -> a -> CNBush Z a
cbase x = \ base nil cons -> base x



cnil : {a : Set} -> (n : Nat) -> CNBush (S n) a
cnil n = \ base nil cons -> nil n

ccons : {a : Set} -> (n : Nat) -> CNBush n a -> CNBush (S (S n)) a -> CNBush (S n) a
ccons n x xs = \ base nil cons -> cons n (x base nil cons) (xs base nil cons)

Since the principle of fold is already encoded in the constructors, the following definition of cfoldB is essentially
an identity function.

cfoldB : {a : Set} -> {p : Nat -> Set} ->
(a >p2) >
((n : Nat) -> p (S n)) —>
((n: Nat) >pn->p (8 (S mn) ->p (Sn) —>
(n : Nat) -> CNBush n a -> pn
cfoldB base nil cons n b = b base nil cons

Programming with the Church-encoded CNBush is just like programming with fo1dBN for BushN. Instead of using
f01dBN, we use cfoldB. For example, the following is the map function for CNBush.

cmapB : {a b : Set} -> (n : Nat) -> (a -> b) -> CNBush n a -> CNBush n b
cmapB {a} {b} n f =
cfoldB {a} {\ n -> CNBush n b} (\ x -> cbase (f x)) cnil ccons n

Note that we do not use any recursion in the definitions of cfoldB and cmapB.
Although we can program with the Church-encoded CNBush using cfoldB, we cannot obtain the induction principle
from cfoldB, as it is well-known that induction is not derivable in the Calculus of Construction ([7], [12]).

3 Case study I: de Bruijn notation as the nested data type Term

One place in the literature where nested data types are useful is the representation of de Bruijn lambda terms. In this
section and the next section, we give an extended case study of two nested data types that are used to represent the
de Bruijn lambda terms. The case study demonstrates that the dependently typed folds is sufficient for the purpose
of programming and reasoning about nested data types.

Recall that the idea of de Bruijn notation is to use a number to represent a bound variable. The number
is the number of binders between the bound variable and its binding site [II]. For example, the lambda term
Azx.x (Ay.xz y (Az.x y z)) is represented as A.0 (A.1 0 (A.2 1 0)). This idea can be captured by the following data types
(from [3]).

data Incr (a : Set) : Set where
Zero : Incr a
Succ : a -> Incr a

data Term (a : Set) : Set where
Var : a -> Term a
App : Term a -> Term a -> Term a
Lam : Term (Incr a) -> Term a

The data type Term is a nested data type because the constructor Lam requires an argument of larger type Term
(Incr a), instead of Term a. At each level down the constructor Lam, a term will gain an additional Incr in its type.
For example, the following are the representations of the terms A.0 (A\.1 0 (A.2 1 0)) and A.A.1 0 (S(S‘W*)).

terml : Term Char

terml = Lam (App (Var Zero) -- Var Zero : Term (Incr Char)
(Lam (App (App (Var (Succ Zero))
(Var Zero)) -- Var Zero : Term (Incr (Incr Char))

(Lam (App (App (Var (Succ (Succ Zero)))
(Var (Succ Zero)))



(Var Zero))))))

term2 : Term Char
term2 = Lam (Lam (App (App (Var (Succ Zero)) (Var Zero))
(Var (Succ (Succ W)))))
-- Var (Succ (Succ W)) : Term (Incr (Incr Char))

Notice that each variable in terml, term2 has a type of the form Term (Incr™ Char). In a term of the type Term
Char, the maximum number of Succ in a bound variable is strictly less than the number of Incr in its type, while
the number of Succ in a free variable is equal to the number of Incr in its type.

3.1 Dependently typed folds for Incr and Term

Since we will need to manipulate both bound and free variables, we define the following dependently typed fold foldI
and mapIncr function for Incr” a.

NIncr : Nat -> Set -> Set
NIncr = NTimes Incr

foldI : {a : Set} -> {p : Nat -> Set} -> (n : Nat) ->
(a >p2Z) >
((m : Nat) -> p (S m)) ->
((m : Nat) =>pm ->p (Sm)) -> NIncrna->pn
foldIl Z base zero succ x = base x
foldI (S n) base zero succ Zero = zero n
foldI (S n) base zero succ (Succ x) = succ n (foldI n base zero succ x)

mapIncr : {a b : Set} -> (n : Nat) -> (a => b) => NIncr n a -> NIncr n b
mapIncr {a} {b} n f y =
foldI {a} {\ n -> NIncr n b} n £ (\ m -> Zero) (\ m -> Succ) y

Of course, the usual fold function for the regular data type I is an instance of foldI.

foldI’ : {a : Set} -> {p : Set} -> p -> (a -> p) -> Incr a -> p
f0ldI’ {a} {p} zero succ = foldI {a} {\ n -> p} (S Z) succ (\ m -> zero) (\ m x -> x)

Let a be a fixed constant type. We say y : NIncr n ais closed if y only consists of Zero and Succ, otherwise
we say y is open. If y : NIncr n a is open, then it must be of the form Succ” x, where x : a. The behavior of
mapIncr is subtle. Supposey : NIncr n a is open, then the result of mapIncr 1 Succ y (where ! < n) will be Succ
y. If y : NIncr n ais closed, then y must be of the form Succ™ Zero, where m < n. In this case mapIncr 1 Succ
y will be evaluated to y if m <1 < n, or evaluated to Succ y if [ < m. We can test this by comparing the following
numl and num2. The program numl is evaluated to Succ (Succ Zero), while num2 is evaluated to Succ (Succ (Succ
Zero)).

num0 : NIncr (S (S (8 (S (S 2))))) Char

num0 = Succ (Succ Zero)

numl : NIncr (S (S (S (S (S (S 2)))))) Char

numl = mapIncr {Incr (Incr Char)} {Incr (Incr (Incr Char))}
(s (s (S 2))) Succ num0

num2 : NIncr (S (S (S (S (S (S 2)))))) Char

num2 = mapIncr {Incr (Incr (Incr Char))} {Incr (Incr (Incr (Incr Char)))}
(8 (8 Z)) Succ num0

We now define the following dependently typed fold for Term (Incr” a).
foldT : {a : Set} -> {p : Nat -> Set} -> (n : Nat) —->

((m : Nat) -> NIncr m a -> p m) ->
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((m : Nat) ->pm ->pm->pm) —>
((m : Nat) > p (Sm) -> pm) -> Term (NIncr n a) -> pn
£0l1dT {a} {p} n var app lam (Var x) = var n x
f0l1dT {a} {p} n var app lam (App x1 x2) =
app n (foldT {a} {p} n var app lam x1) (foldT {a} {p} n var app lam x2)
£01dT {a} {p} n var app lam (Lam x) = lam n (foldT {a} {p} (S n) var app lam x)

The function foldT traverses the structure of Term, replaces the constructors Var, App and Lam with var, app and
lam, increases the number n only when traversing under the Lam constructor.
The higher-order fold for Term is an instance of the dependently typed fold foldT.

hfoldT : {a : Set} -> {p : Set -> Set} —>
({a : Set} -> p a) —>
({a : Set} >pa->pa->pa) —>
({a : Set} -> p (Incr a) -> p a) -> Term a -> p a
hfoldT {a} {p} var app lam =
foldT {a} {\ n -> p (NTimes Incr n @)} Z (\ m a -> var) (A m -> app) (\ m -> lam)

The following is the map function defined from foldT and mapIncr.

mapT : {a b : Set} -> (n : Nat) -> (a -> b) -> Term (NIncr n a) -> Term (NIncr n b)
mapT {a} {b} n £ y =
foldT {a} {\ n -> Term (NIncr n b)} n
(\n v -> Var (mapIncr n f v)) (\ n -> App) (\ n -> Lam) y

When defining the function mapT, we use foldT to traverse the abstract data type Term (NIncr n a), and perform
action at the leaves, where we apply the mapIncr function.

For a variable Var x, we say it is open/closed iff x is open/closed. Note that an open variable is necessarily a
free variable, but a closed variable can be either bound or free. For example, the variable Var Zero : Term (Incr
Char) is a free and closed variable because it is not bound by any Lam constructor, while the variable Var Zero :
Term (Incr Char) in Lam (Var Zero) : Term Char is closed and bound. Let y be a term of type Term (NIncr n
a) for some fixed constant type a. The function call mapT n £ y will map £ to all the open variables in y and leave
the closed variables (including free and closed variables) unchanged. On the other hand, the function call mapT Z £
y will map the function f to all the free variables (open or closed) in y, while leaving the bound variables unchanged.
Whenn=Zandy : Term (Incr Z a), there are no closed free variables in y, thus the free variables coincide with
the open variables, the bound variables coincide with the closed variables.

3.2 Programming with dependently typed folds and maps

The following programs are the printing functions defined from f0ldT and foldI.

showT : Term String -> String
showT y = foldT {String} {\ n -> String} Z
showI
(\mxy->“LP ¢ ++ x ++ ¢ EMP ¢ ++ y ++ ¢ RP ©)
(N\mx > ‘L ‘“++x)y
showI : (m : Nat) -> NIncr m String -> String
showI m y = foldI {String} {\ n -> String} m
ANx->x) A\m->“Ze ‘) \mx -> “Su ‘ ++x)y
showTC : Term Char -> String
showTC x = showT (mapT Z (\ x -> Cons x Nil) x)

In the definition of showTC, we first convert all the free variables in the term x to Strinﬂ and then apply showT to
the resulting term.

3The data types String and Char are user-defined.
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We now define the abstraction function abst that takes a name x and a term t, returns the abstracted term
Az.t. We assume there is a generic comparison functiorﬂ cmp : {a : Set} -> a -> a -> Bool and it satisfies
axioml : {a : Set} -> (x x1 : a) -> cmp x x1 == True -> x == x1. We can express these two assumptions
as postulates in Agda.

abst : {a : Set} -> a -> Term a -> Term a

abst x t = Lam (mapT Z (match x) t)

match : {a : Set} -> a -> a -> Incr a

match {a} al a2 = foldBool {Incr a} Zero (Succ a2) (cmp al a2)
foldBool : {p : Set} -> p -> p -> Bool > p

foldBool x y True = x

foldBool x y False =y

The function match compares al with a2, if they are equal, returns Zero, else returns Succ a2. So the function
call abst x t will look at all the free variables in t, replace a free variable to Zero if it is equal to x, otherwise add
an extra Succ to it.

A beta-redex is a term of the form App (Lam t) s : Term a. To perform a beta reduction for App (Lam t)
s, we need to substitute the variables bound by Lam in t with s. The following actions are required to define the
subsitution. (1) For each variable bound by the Lam inside t, we need to replace it by s. (2) For each free variable
in t, we need to decrease a Succ in it. (3) For each free variable in s, we need to increase a Succ for it whenever s is
traversing under a binder in t. (4) All the other bound variables in t remain unchanged.

In the following we define the substitution function subst and the function redex.

redex : {a : Set} -> Term a -> Term a
redex (App (Lam t) s) = subst Z s t
redex t = t

subst : {a : Set} -> (n : Nat) -> Term a ->
Term (NIncr n (Incr a)) -> Term (NIncr n a)
subst {a} ns t =
f0ldT {Incr a} {\ n -> Term (NIncr n a)} n
(\m -> varcase m s) (\' m -> App) (A m -> Lam) t

varcase : {a : Set} -> (n : Nat) -> Term a -> NIncr n (Incr a) -> Term (NIncr n a)
varcase {a} n s v =
foldI {Incr a} {\ n -> Term (NIncr n a)} n

(h s)
(\ m -> Var Zero) -- Action (4)
(\ m r -> mapT Z Succ r) -- Action (3)
v
where h : {a : Set} -> Term a -> Incr a -> Term a
h s Zero = s -- Action (1)
h s (Succ b) = Var b -- Action (2)

The substitution function subst is generalized to allow substitution for any term of the type Term (NIncr n (Incr
a)), the definition of redex uses subst Z. In the definition of subst, all the actions happen in the variable case,
we use foldT just for traversing to the leaves of Term (NIncr n (Incr a)). The varcase function inspects on the
variable v and performs actions (1)—(4).

3.3 Reasoning with the induction principles indI and indT

Based on the dependently typed fold £01dT and foldI, we can obtain the following induction principles. The induction
principles follow the same definitions as foldT and foldI, except their types are more general. They provide a way
to prove a property holds for any Term (NIncr n a) and NIncr n a.

4The comparison function here is similar to the equality method in the Eq type class in Haskell.
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indT : {a : Set} -> {p : (n : Nat) -> Term (NIncr n a) -> Set} ->
(n : Nat) -> ((m : Nat) -> (v : NIncr m a) -> p m (Var v)) ->
((m : Nat) -> {vl v2 : Term (NIncr m a)} ->
pmvl ->pmv2 ->pm (App vl v2)) —>
((m : Nat) -> {v : Term (NIncr (Sm) a)} > p (Sm) v -> pm (Lam v)) ->
(v : Term (NIncr n a)) ->pnv

indI : {a : Set} -> {p : (n : Nat) -> NIncr n a -> Set} -> (n : Nat) ->
((x : a) >pZzx) >
((m : Nat) -> p (S m) Zero) —->
((m : Nat) => {x : NIncr m a} => pm x -> p (8 m) (Succ x)) —>
(v : NIncrna) —>pnv

Now we can use induction to prove the following thm1, which states (Ax.t) © =g t.

thml : {a : Set} -> (x : a) -> (t : Term a) —>
redex (App (abst x t) (Var x)) ==t
thmi {a} x t =
indT {a} {\ n v -> subst n (Var x) (mapT n (match x) v) == v} Z
(thm0 x)
(\ m {v1} {v2} ih1l ih2 -> cong2 App ihl ih2)
(\ m {v} ih -> cong Lam ih) t

thm0 : {a : Set} -> (x : a) -> (m : Nat) -> (v : NIncr m a) —->
subst m (Var x) (mapT m (match x) (Var v)) == Var v
thm0 {a} x m v =
indI {a} {\ n u -> subst n (Var x) (mapT n (match x) (Var u)) == Var u} m
(\ x1 -> lemmO (cmp x x1) (lemml x x1) (lemm2 x x1))
(N m -> refl) (\ m {x1} ih -> cong (mapT Z Succ) ih) v

lemmO : {p : Set} -> (x : Bool) -> (x == True -> p) -> (x == False -> p) -> p
lemml : {a : Set} -> (x x1 : a) -> (cmp x x1 == True) ->

subst Z (Var x) (mapT {a} {Incr a} Z (match {a} x) (Var x1)) == Var x1
lemm2 : {a : Set} -> (x x1 : a) -> (cmp x x1 == False) ->

subst Z (Var x) (mapT {a} {Incr a} Z (match {a} x) (Var x1)) == Var x1

The inductive cases for thml are straightforward, the only nontrivial case is the variable case, which needs thm0. For
thmO, the only nontrivial case is the base case, where we need a proof of (x x1 : a) -> subst Z (Var x) (mapT
Z (match x) (Var x1)) == Var x1. We prove this by considering both cmp x x1 == True (lemml) and cmp x x1
== False (lemm2). The proofs of lemml (requires axioml), lemm2 and lemmO are straightforward.

We now consider the theorems mapTfuseZ and mapSubst, which are properties of mapT and subst and will be
needed for proving the theorem cvtThm in the Section [4]

The following mapTfuseZ theorem states that for any s : Term (NIncr n a), the following two results are equal:
(1) first add an extra Succ to all the free variables, and then add an extra Succ to all the open variables. (2) first
add an extra Succ to all the open variables, and then add an extra Succ to all the free variables.

mapTfuseZ : {a : Set} -> (n : Nat) -> (s : Term (NIncr n a)) ->
mapT {a} {Incr a} (S n) Succ
(mapT {NIncr n a} {Incr (NIncr n a)} Z Succ s) =
mapT {Incr (NIncr n a)} {Incr (Incr (NIncr n a))} Z Succ
(mapT {a} {Incr a} n Succ s)
mapTfuseZ {a} n s = mapTfuse {a} Z n s

mapTfuse : {a : Set} -> (m n : Nat) -> (s : Term (NIncr (add m n) a)) ->
mapT {a} {Incr a} (S (add m n)) Succ
(mapT {NIncr n a} {Incr (NIncr n a)} m Succ s) ==
mapT {NIncr (S n) a} {Incr (NIncr (S n) a)} m Succ
(mapT {a} {Incr a} (add m n) Succ s)
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The mapTfuseZ theorem requires us to prove a more general lemma mapTfuse, finding this lemma takes a lot of effort,
but it can be proved by standard induction using indT and indI.

The following mapSubst theorem states how mapT Z Succ commutes with subst m. Again, mapSubst requires a
nontrivial general lemma mapSubst’. The lemma mapSubst’ can be proved by induction using the lemma mapTfuseZ.

mapSubst : {a : Set} -> (m : Nat) -> (s : Term a) -> (t : Term (NIncr (S m) a)) ->
mapT Z Succ (subst m s t) == subst (S m) s (mapT Z Succ t)
mapSubst {a} m s t = mapSubst’ {a} Z m s t
mapSubst’ : {a : Set} -> (nm : Nat) -> (s : Term a) ->
(t : Term (NIncr (S (add n m)) a)) ->
mapT {NIncr m a} {NIncr (S m) a} n Succ (subst (add n m) s t) ==
subst (8 (add n m)) s
(mapT {NIncr (S m) a} {NIncr (S (S m)) a} n Succ t)

4 Case study II: de Bruijn notation as the nested data type TermE
In this section we consider representing the de Bruijn lambda terms using the following nested data type.

data TermE (a : Set) : Set where
VarE : a -> TermE a
AppE : TermE a -> TermE a -> TermE a
LamE : TermE (Incr (TermE a)) -> TermE a

This data type is already motivated by Bird and Paterson [5]. Recall that when substituting term s for z in term
t, i.e. [s/x]t, we need to perform the actions (1)-(4) (Section [3). The action (3) requires traversing the term s to
add an additional Succ when the substitution is going under a binder. This has two drawbacks, namely, traversing s
takes additional time and prevents the sharing of s.

For example, the redex (A.0 (A.1 0 (A\.210))) (A.0 (S'W’)) will be reduced to the following.

(A0 (S W) (A(A\0 (S(S 'W))) 0 (A.(X.0 (S(S(S'W')))) 1 0))

Not only we traverse the term (X\.0 (S 'W’)) three times to add S, but also we have three different copies of
(X.0 (S 'W’)) in the resulting term. A more efficient implementation would avoid such traversal and allow us to
obtain the following term.

term0 = (A.0 (S /W) (A.(S(A.0 (S 'W’))) 0 (A.(S(S(A.0 (S 'W')))) 1 0))

In term0, we have three same copies of (\.0 (S 'W’)). To enable such representation, we would need to allow Succ
to be applied to a term, hence the type for the LamE constructor. The following term1 is the concrete representation
of (A.0 (S'W’)) and term2 is the representation of term0.

terml : TermE Char
terml = LamE (AppE (VarE Zero) (VarE (Succ (VarE W))))

term2 : TermE Char
term2 = AppE terml
(LamE (AppE (AppE (VarE (Succ terml))
(VarE Zero))
(LamE (AppE (AppE (VarE (Succ (VarE (Succ terml))))
(VarE (Succ (VarE Zero))))
(VarE Zero)))))
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4.1 The dependently typed fold foldE

At each level down the constructor LamE, a term gains an additional type-constructor \ x -> Incr (TermE x) in its
type. So we will focus on the type of the form TermE (IncrTermE" a), where IncrTermE"™ means the n-th iteration of
\ x -> Incr (TermE x).

We define the following dependently typed fold £ol1dE for TermE (IncrTermE" a).

IncrTermE : Nat -> Set -> Set
IncrTermE = NTimes (\ x -> Incr (TermE x))

foldE : {a : Set} -> {p : Nat -> Set} -> (n : Nat) ->
(a ->p2) >
((m : Nat) -> p (Sm) ->
((m : Nat) > pm->p (Sm) —>
((m : Nat) ->pm ->pm->pmn) >
((m : Nat) => p (Sm) -> pm) -> TermE (IncrTermE n a) -> pn
foldE {a} {p} Z varBase varZero varSucc app abs (VarE x) = varBase x
foldE {a} {p} (S n) varBase varZero varSucc app abs (VarE Zero) = varZero n
foldE {a} {p} (S n) varBase varZero varSucc app abs (VarE (Succ x)) =
varSucc n (foldE {a} {p} n varBase varZero varSucc app abs x)
foldE {a} {p} n varBase varZero varSucc app lam (LamE x) =
lam n (foldE {a} {p} (S n) varBase varZero varSucc app lam Xx)
foldE {a} {p} n varBase varZero varSucc app abs (AppE x x’) =
app n (foldE {a} {p} n varBase varZero varSucc app abs x)
(foldE {a} {p} n varBase varZero varSucc app abs x’)

Observe that £oldE is well-founded and the abstract indexed data type TermE (IncrTermE" a) has five constructors,
corresponding to the five cases in the definition of foldE. There are two variable cases for TermE (IncrTermE™ ™' a),
i.e. VarE Zero and VarE (Succ x), where x is of the type TermE (IncrTermE" a). So there is a recursive call in the
case for VarE (Succ x), which traverses the term x.

The following is the map function defined from foldE.

mapE : {a b : Set} -> (n : Nat) -> (a -> b) >
TermE (IncrTermE n a) -> TermE (IncrTermE n b)

mapE {a} {b} n f x = foldE {a} {\ n -> TermE (IncrTermE n b)} n
(\ x -> VarE (f %))
(\ m -> VarE Zero)
(\m r -> VarE (Succ 1))
(\ m -> AppE)
(\ m -> LamE) x

The function call mapE n f t keeps every constructor in t unchanged and only applies the function f in the case of
VarE x, where x : a. The map function for TermE a is mapE Z.
The dependently typed fold foldE can be specialized to the higher-order fold for TermE.

hfoldE : {a : Set} -> {p : Set -> Set} —>
({a : Set} -> a -> p a) ->
({a : Set} >pa->pa->pa)->
({a : Set} -> p (Incr (p a)) -> p a) -> TermE a -> p a
hfoldE {a} {p} var app lam =
foldE {a} {\ n -> p (NTimes (\ y -> Incr (p y)) n a)}
Z var (\ m -> var Zero) (\ m r -> var (Succ r)) (\ m -> app) (\ m -> lam)

The higher-order fold hfoldE replaces the constructors VarE, AppE and LamE to var, app and lam while keeping the
constructors Zero and Succ unchanged.
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4.2 Programming with foldE

The following function redexE is for reducing a beta-redex. The substitution function substE follows the same idea
as the subst function in Section |3} except that it does not perform action (3) due to the optimization of the TermE
data type.

redexE : {a : Set} -> TermE a -> TermE a
redexE (AppE (LamE t) s) = substE Z s t
redexE t = t

substE : {a : Set} -> (n : Nat) -> TermE a —>
TermE (IncrTermE n (Incr (TermE a))) -> TermE (IncrTermE n a)
substE {a} n s = foldE {Incr (TermE a)} {\ n -> TermE (IncrTermE n a)} n

(base s)
(\ m -> VarE Zero) -- Action (4)
(\m r -> VarE (Succ r)) -- No need for action (3)
(\ m -> AppE)
(\ m -> LamE)
where base : TermE a -> Incr (TermE a) -> TermE a
base s Zero = s -- Action (1)
base s (Succ x) = x -- Action (2)

The following abstraction function abstE x t binds the free variable x in t. The definition of abstE follows the
same idea as abst (Section .

abstE : {a : Set} -> a -> TermE a -> TernE a

abstE x t = LamE (mapE Z (matchE x) t)

matchE : {a : Set} -> a -> a -> Incr (TernE a)

matchE {a} al a2 = foldBool {Incr (TermE a)} Zero (Succ (VarE a2)) (cmp al a2)

Let us now consider converting a lambda expression of the type TermE a to a lambda expression of the type Term
a. We will define a generalized conversion function to convert TermE (IncrTermE n a) to Term (NIncr n a) for any
n. The main difference between TermE (IncrTermE n a) and Term (NIncr n a) is that Succ can apply to a term t

TermE (IncrTermE n a), so there are terms of the form VarE (Succ t) : TermE (IncrTermE (S n) a). The
key idea of the conversion is that when converting a term of the form VarE (Succ t), we first convert the term t of
type TermE (IncrTermE n a) to a term t’ of type Term (NIncr n a), and then apply the constructor Succ to all
the free variables in t’, i.e. mapT Z Succ t’.

cvtE : {a : Set} -> (n : Nat) -> TermE (IncrTermE n a) -> Term (NIncr n a)
cvtE {a} n t = foldE {a} {\ n -> Term (NIncr n a)} n

(\ a -> Var a)

(\ m -> Var Zero)

(\ m t> -> mapT Z Succ t’)

(\ m -> App)

(\m -> Lam) t

The function cvtE converts VarE x, VarE Zero, AppE and LamE to Var x, Var Zero, App and Lam accordingly. The
only subtle case is how to convert VarE (Succ t), which we have explained.

4.3 Reasoning with the induction principle indE

The following is the induction principle for TermE (IncrTermE n a), we elide the definition as it is the same as foldE.

indE : {a : Set} -> {p : (n : Nat) -> TermE (IncrTermE n a) -> Set} -> (n : Nat) ->
((x : a) > p Z (VarE x)) ->
((m : Nat) -> p (S m) (VarE Zero)) ->
((m : Nat) -> {r : TermE (IncrTermE m a)} ->
pmr ->p (8m) (VarE (Succ r))) ->
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((m : Nat) -> {x1 x2 : TermE (IncrTermE m a)} ->
pmxl->pmzx2->pmn (AppE x1 x2)) ->

((m : Nat) -> {x : TermE (IncrTermE (S m) a)} ->
p (Sm) x -> pm (LamE x)) —->

(v : TermE (IncrTermE n a)) -> pn v

The induction principle indE gives us a way to prove a property p : (n : Nat) -> TermE (IncrTermE n a)
-> Set holds for any v : TermE (IncrTermE n a). To obtain such proof, we first have to prove p holds for VarE x :
TermE (IncrTermE Z a) and VarE Zero : TermE (IncrTermE (S m) a). They correspond to the two arguments

(x : a) ->p Z (VarE x) and (m : Nat) -> p (S m) (VarE Zero) for indE. Then we will need to prove three
inductive cases, they correspond to the other three arguments for indE. For example, one inductive case requires us
to prove p m (LamE x), using the inductive hypothesis p (S m) x.

We now use indE to prove that (Az.t) x =g t holds for our definition of redexE. The proof is similar to the proof
of theorem thm1 for redex in Section [3l

thml : {a : Set} -> (x : a) -> (t : TermE a) ->
redexE (AppE (abstE x t) (VarE x)) ==t

thml {a} x t =

indE {a} {\ n v -> substE n (VarE x) (mapE n (matchE x) v) == v} Z

(lem3 x) (\ m -> refl) (\ m {r} ih -> cong (\ y -> VarE (Succ y)) ih)
(\ m ih1 ih2 -> cong2 AppE ihl ih2) (\ m ih -> cong LamE ih) t

lem3 : {a : Set} > (xy : a) —>

substE Z (VarE x) (mapE Z (matchE x) (VarE y)) == VarE y

To convince ourself that the conversion function cvtE is well-behaved, we use indE prove that the conversion
function commutes with the substitution, i.e. cvtE([s/x]t) = [(cvtE s)/z](cvtE t).

cvtThm : {a : Set} -> (n : Nat) -> (s : TermE a) ->
(t : TermE (IncrTermE (S n) a)) ->
cvtE {a} n (substE n s t) == subst n (cvtE {a} Z s) (cvtE {a} (S n) t)
cvtThm {a} n s t =
indE {Incr (TermE a)}
{\nv -> cvtE {a} n (substE n s v) ==
subst n (cvtE {a} Z s) (cvtE {a} (S n) v)} n

(\ x -> lemmVar x s) -- case VarE x
(\ m -> refl) -- case VarE Zero
A\ m {r} ih > -- case VarE (Succ 1)

equational cvtE {a} (S m) (substE (S m) s (VarE (Succ r)))
equals cvtE {a} (S m) (VarE (Succ (substE m s r))) by refl
equals mapT {NIncr m a} {Incr (NIncr m a)} Z Succ

(cvtE {a} m (substE m s 1))
by refl
equals mapT {NIncr m a} {Incr (NIncr m a)} Z Succ
(subst m (cvtE {a} Z s) (cvtE {a} (S m) r))
by cong (mapT {NIncr m a} {Incr (NIncr m a)} Z Succ) ih
equals subst (S m) (cvtE {a} Z s)
(mapT {NIncr (S m) a} {Incr (Incr (NIncr m a))} Z Succ
(cvtE {a} (8 m) r))
by mapSubst {a} m (cvtE {a} Z s) (cvtE {a} (S m) r)
equals subst (S m) (cvtE {a} Z s)
(cvtE {a} (8 (S m)) (VarE (Succ r)))

by refl)
(\ m {x1} {x2} ihl ih2 -> cong2 App ihl ih2) -- case AppE x1 x2
(\ m {x} ih -> cong Lam ih) -- case LamE x

t

The cases for LamE x, AppE x1 x2 and VarE Zero are straightforward. For the case of VarE x, we need the
following lemmVar and lemmM.

17



lemmVar : {a : Set} -> (x : Incr (TermE a)) -> (s : TermE a) ->

cvtE Z (substE Z s (VarE x)) == subst Z (cvtE Z s) (cvtE (S Z) (VarE x))
lemmVar {a} Zero s = refl
lemmVar {a} (Succ x) s = lemmM {a} Z (cvtE Z s) (cvtE Z x)

lemmM : {a : Set} -> (m : Nat) -> (s : Term a) -> (t : Term (NIncr m a)) ->
t == subst m s (mapT {a} {Incr a} m Succ t)

The lemma lemmVar is just a special case of cvtThm for VarE x, it needs the lemma lemmM, which can be proved by
straightforward induction.

For the case of VarE (Succ r), we need the induction hypothesis ih and the mapSubst theorem we proved in
Section [3] We also use a custom equational reasoning tactic in the following form ﬂ

equational ti
equals t2 by pil
equals t3 by p2 ...
equals tn by p(n-1)

n—1

This means we prove the following ¢1 B to £ t3... Pz tn.

4.4 Discussion

We have shown that not only we are able to program all the functions for manipulating de Bruijn lambda terms like
Bird and Paterson did [5], but also we are able to reason about the programs formally using induction principles.
We are working in a terminating dependently typed language, whereas Bird and Paterson worked in Haskell, a
language with general recursion. Benefiting from the flexibility of dependently typed folds, we also make some minor
improvements. The following are Bird and Patterson’s implementation of cvtE and cvtBodyE functions in Haskell.

cvtE :: TermE a -> Term a
cvtE = gfoldE Var App (Lam . joinT . mapT distT) id

cvtBodyE :: TermE (Incr (TermE a)) -> Term (Incr a)
cvtBodyE = joinT . mapT distT . cvtE . mapE (mapI cvtE)

The functions gfoldE, joinT, mapE and mapT all require traversal over a term structure. Bird and Paterson’s im-
plementation of cvtE requires three traversal functions and cvtBodyE requires five traversal functions. While our
implementation of cvtE only requires two traversal functions, i.e. foldE and mapT. Moreover, the function cvtE
corresponds to cvtE Z in our implementation and cvtBodyE corresponds to cvtE (S Z). So our implementation of
cvtE is more flexible.

5 Obtaining the dependently typed folds for any nested data types

In this section, we hint at how the construction of dependently typed fold in Section [2| can be generalized to arbitrary
nested data types. We do not provide a general formulation of the construction because of the technical overhead in
formulating the most general form of nested data type declarations. One can find a formulation of nested data types
as the fix points of the polynomial higher-order functors in [6]. Instead, we give an example of nested data type that
is hopefully general enough to make it clear what one would do in the general case. We leave the general formulation
and the meta-theoretical study of dependently typed folds as future work.

In the previous sections, we use a natural number n as the index to obtain the dependently typed folds for NBush
n a, Term (NIncr n a) and TermE (IncrTermE n a). While using the natural number index has the benefit of being
intuitive, it raises the question of whether it is always possible to obtain dependently typed folds for nested data
types. Fortunately, in a dependently typed language, types can depend not only on the natural numbers but also
on any inductive data types. In a general setting, given an arbitrarily complicated nested data type, we can use a
customized regular data type as the index to define the dependently typed fold.

5Please see the file Equality.agda in the supplementary material for details.

18



5.1 A method to obtain dependently typed folds
Consider the following nested data type I and D.

data I (a : Set) : Set where
Zero : I a
Succ : a—>I (ITa)->1Ia

data D (a b : Set) : Set where
DNil : Dab
DCons : a ->b ->D (I a)b->DMCIDb) (Ib)) (Ta)->Dab
ACons : Ib->D (I (I (Dba)) D MDba (Dab)) ->Dab

Here D is a type-constructor of arity 2 and I is a type-constructor of arity 1. The nested data type D is reasonably
arbitrary and general. It refers to another nested data type I, and its constructors DCons and ACons are also nested.
We will consider how to obtain a dependently typed fold for D.

We first define the following regular data type IndexD to describe all the types arising from D, i.e. the types
constructed from D, I and the variables a, b.

data IndexD : Set where
VarA : IndexD
VarB : IndexD
IsD : IndexD -> IndexD -> IndexD
IsI : IndexD -> IndexD

The constructors VarA and VarB describe the two variables for D, the constructor IsD of arity 2 describes the type-
constructor D and the constructor IsI of arity 1 describes I.

We then use structural recursion to define the following type-level function that translates a value of IndexD to
its corresponding type.

H : IndexD -> Set -> Set -> Set
H VarA a b = a
HVarB ab=>»
H(IsDxy)ab
H (IsI x) ab =

=D (Hzxab) (Hy ahb)
I (Hx ab)

For example, H (IsD (IsI (IsD (IsI VarA) (IsI VarB))) (IsI VarA)) Nat Char will be evaluated to the type D
(I (D (I Nat) (I Char))) (I Nat).

Similar to NBush n a, we view H i a b as a kind of abstract indexed data type. We now define the dependently
typed fold for H i a b interactively in Agda. We begin with the following.

foldD : {a b : Set} {p : IndexD -> Set} -> (i : IndexD) ->Hiab ->pi
foldD {a} {b} {p} i1 =7

We will extend the type of foldD with arguments that correspond to the constructors of the abstract data type
H i a b. By dependent pattern-matching on i and H i a b, we have the following seven cases.

foldD : {a b : Set} {p :
foldD {a} {b} {p} VarA

: IndexD -> Set} -> (i : IndexD) ->H i ab->pi
1
foldD {a} {b} {p} VarB 1 = 7
i
i
i

=7

foldD {a} {b} {p} (IsD i j) DNil = 7

foldD {a} {b} {p} (IsD i j) (DCons x y 1 v) =7
foldD {a} {b} {p} (IsD i j) (AComs x 1) = 7
foldD {a} {b} {p} (IsI i) Zero =7

foldD {a} {b} {p} (IsI i) (Succ x y) = ?

The cases for VarA, VarB and DNil suggest that we extend foldD with the arguments varA, varB and bnil.
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foldD : {a b : Set} {p : IndexD -> Set} ->
(i : IndexD) ->
(varA : a -> p Vard) ->
(varB : b -> p VarB) ->
(bnil : {i j : IndexD} -> p (IsD i j)) ->
Hiab->pi
foldD {a} {b} {p} VarA varA varB bnil 1 = varA 1
foldD {a} {b} {p} VarB varA varB bnil 1 = varB 1
foldD {a} {b} {p} (IsD i j) varA varB bnil DNil = bnil
foldD {a} {b} {p} (IsD i j) varA varB bnil (DCons x y 1 v) = 7

We will now focus on the case for DCons x y 1 v, as the other cases follow similarly. We want to make a recursive
call of £01dD on each of the components in DCons x y 1 v. The following is the environment provided by Agda.

Goal: p (IsD i j)

v :DMD I Hjab) (I MHIab)) (I (H1iab))
1 :D (I (Hiab)) (Hjab)

y :Hjab

X :Hiab

The key to make these recursive calls is to provide fo1dD with the correct indexes and these indexes can be structurally
larger than IsD i j. For example, the index we provide to foldD when calling it on v is IsD (IsD (IsI j) (IsI
j)) (IsI i) and the result of the recursive call is of the type p (IsD (IsD (IsI j) (IsI j)) (IsI i)). Thus we
add the argument bcons for foldD to combine the results of the recursive calls on x, y, 1, v.

foldD : {a b : Set} {p : IndexD -> Set} ->
(i : IndexD) ->
(varA : a -> p VarhA) ->
(varB : b -> p VarB) ->
(bnil : {i j : IndexD} -> p (IsD i j)) ->
(bcons : {i j : IndexD} -> p i ->p j -> p (IsD (IsI i) j) ->
p (IsD (IsD (IsI j) (IsI j)) (IsI i)) -> p (IsD i j)) ->
Hiab->pi
foldD {a} {b} {p} VarA varA varB bnil bcons 1 = varA 1
foldD {a} {b} {p} VarB varA varB bnil bcons 1 = varB 1
foldD {a} {b} {p} (IsD i j) varA varB bnil bcons DNil = bnil
foldD {a} {b} {p} (IsD i j) varA varB bnil bcons (DCons x y 1 v) =
bcons
(foldD {a} {b} {p} i varA varB bnil bcons x)
(foldD {a} {b} {p} j varA varB bnil bcons y)
(foldD {a} {b} {p} (IsD (IsI i) j) varA varB bnil bcons 1)
(foldD {a} {b} {p} (IsD (IsD (IsI j) (IsI j)) (IsI i))
varA varB bnil bcons v)

Note that the above recursive definition of foldD is well-founded, Agda is able to confirm its termination. The type
of the final definition of foldD is the following, its full definition is in the supplementary material.

foldD : {a b : Set} {p : IndexD -> Set} ->
(i : IndexD) ->
(varA : a -> p Varh) ->
(varB : b -> p VarB) ->
(bnil : {i j : IndexD} -> p (IsD i j)) —->
(bcons : {i j : IndexD} -> p i ->p j -> p (IsD (IsI i) j) ->
p (IsD (IsD (IsI j) (IsI j)) (IsI i)) -> p (IsD i j)) ->
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(acons : {i j : IndexD} -> p (IsI j) ->
p (IsD (IsI (IsI (IsD j i))) (IsD (IsD j i) (IsD i j))) —->
p (IsD i j)) ->
(zero : {i : IndexD} -> p (IsI i)) —>
(succ : {i : IndexD} -> p i -> p (IsI (IsI i)) -> p (IsI i)) ->
Hiab->pi

We can use the dependently typed fold £01dD to define the following map and sum functions.

mapD : {a bcd : Set} -> (i : IndexD) -> (a -=>¢c) > (b ->d) ->Hiab->Hicd
mapD {a} {b} {c} {d} i £ g1l =
foldD {a} {b} {\ i > Hi c d} i £ g DNil DCons ACons Zero Succ 1

mapD’ : {abcd: Set} > (a->c) >(b->d) ->Dab->Dcd
mapD’ = mapD (IsD VarA VarB)

sumD : D Nat Nat -> Nat
sumD x = foldD {Nat} {Nat} {\ i -> Nat} (IsD VarA VarB) (\ 'y > y) (\y -> y)
Z (\ x1 x2 x3 x4 -> add x1 (add x2 (add x3 x4))) add Z add x

The map function mapD traverses over the abstract data type H i a b, leaving all the constructors unchanged, while
applying £ and g at the leaves.

Similar to what we have described in the previous sections, we can obtain an induction principle from foldD by
generalizing its type, i.e., generalizing the kind of p to (i : IndexD) -> H i a b -> Set. Moreover, since H i a
b can be viewed as an indexed data type with seven constructors, we can obtain the indexed representation (Section
and the Church-encoding of H (Section . Finally, it should be clear that we can apply the method we just
described to obtain dependently typed folds for any nested data types.

5.2 Specializing dependently typed folds to higher-order folds

Let us consider how to specialize dependently typed folds to the higher-order folds, using the data type D as example.
The following is the type of the higher-order fold for D.

hfoldD : {a b : Set} {p : Set —-> Set -> Set} —>
(dnil : {a b : Set} -> p a b) —>
(dcons : {a b : Set} >a ->b->p (I a)b-—>
p (P @Xb) (IDb) (ITa ->pab —>
(acons : {a b : Set} -> I b —>
pT T @(ba)) (p(pba (pab) ->pab) >
Dab->pab

To obtain this type, we first obtain dnil, dcons and acons, their types are the same as the types for the constructors
DNil, DCons and AComs, except the type-constructor D is replaced by the type variable p of kind Set -> Set -> Set.
We then use bnil, bcons and acons as the additional arguments for the function D a b -> p a b. Note that for any
nested data type, we can obtain the type of its higher-order fold this way.
We now define the following type-level function Hp to replace the constructor IsD by the binary type variable p
Set -> Set -> Set, while keeping the other type-constructors unchanged.

Hp : IndexD -> (Set -> Set -> Set) -> Set -> Set -> Set
Hp VarA p a b = a

Hp VarBpa b =b

Hp (IsDi j) pab=p (Hpipab) (Hpjpab

Hp (IsI i) pab=1I (Hpip ab)

The higher-order fold hfoldD is defined by instantiating fol1dD with \ i -> Hp i p a b.

hfoldD {a} {b} {p} dnil dcons acons x =
foldD {a} {b} {\ i -> Hp i p a b} (IsD VarA VarB)
Ny > y) (\y -> y) dnil dcons acons Zero Succ x
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The higher-order fold hfoldD traverses over D, replacing the constructors DNil, DCons and ACons by dnil, dcons and
acons, while leaving the constructors Zero and Succ unchanged.

5.3 Discussion

Looking back at the definition of foldD, it can be criticized for being too general. For example, although foldD is
defined for folding D, we can also use foldD to define a summation for I Nat.

sumI : I Nat -> Nat
sumI 1 = foldD {Nat} {Nat} {\ y -> Nat} (IsI VarA) (\y > y) (\y -> y)
Z (\xx1x2x3->2Z) (\xx1->2)Zaddl

In this definition of sumI, we need to supply additional arguments such as \ x x1 x2 x3 -> Zand \ x x1 -> Zeven
though we know these arguments will not be used when evaluating sumI.

One way to understand why foldD may also work for I is that since the definition of D involves a nested use of
I, so a fold for I is needed when folding D. As a result, the function foldD may be used to operate on the values that
only involves data type I. If one wants to program with the data type I, then it is more natural to program with the
designated dependently typed fold for I.

We call the dependently typed folds obtained from the method in Section the direct dependently typed folds.
The example of obtaining foldD shows that the direct dependently typed folds always exist and we know how to
systematically construct them.

In practice, we often have more intuition on how we intend to use the nested data types. For example, consider
the Term and TermE data type in the previous sections, where we are particularly interested in types of the forms
Term (Incr"a) and TermE (IncrTermE"a). So in these cases we use a natural number as the index to define folds
for Term (Incr™a) and TermE (IncrTermE"a). Let us call the folds for Term (Incr™a) and TermE (IncrTermE"a)
customized dependently typed folds.

Given a nested data type, its customized dependently typed folds can be different from its direct dependently
typed fold. For example, for the data types Term and TermE, the customized dependently typed folds £01dT and foldE
are not the same as the direct dependently typed folds. On the other hand, for the data type Bush, the customized
dependently typed fold foldB coincides with its direct dependently typed fold.

We say a dependently typed fold is proper if it can be specialized to the corresponding higher-order fold. Because
the higher-order fold is considered the defining property of a nested data type, as the higher-order fold can be
understood as the unique morphism from the initial nested data type object in the higher-order functor category [4}
§4]. We show that the direct dependently typed folds are proper in Section For the customized dependently
typed folds, the properness has to be shown in a case by case basis (e.g. hfoldT and hfoldE for Term and TermE).

6 Related Work

Generalized folds This paper is inspired by the works of Bird, Paterson and Meertens. The higher-order folds such
as hfoldB in Section [I| were thought not expressive enough to define functions such as summation, which leads to
the consideration of generalized folds (|5], [6]). The generalized folds further generalize the existing higher-order folds
with extra higher-order type variables and arguments. For example, the following is a version of generalized fold for
the Bush data type. We have to use the unsafe flag ——no-termination to make Agda accept the following code.

gfoldB : {a : Set} -> {p q : Set -> Set} ->
({p : Set} -> p b) —>
({b : Set} > gb ->p (pb) -=>pb) >
({b : Set} >pb->q (p b)) —>
Bush (q a) -> p a
gfoldB base step k NilB = base
gfoldB {a} {p} {q} base step k (ConsB x xs) =
step x (gfoldB {p a} {p} {q} base step k
(hmapB (\ y -> k (gfoldB {a} {p} {q} base step k y)) xs))

hfoldB : {a : Set} -> {p : Set -> Set} —>
({b : Set} > pb) > ({b : Set} > b >p (pb) ->pb) ->Bush a ->p a
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hfoldB {a} {p} base step = gfoldB {a} {p} {\ y -> y} base step (\ y -> y)

sumB : Bush Nat -> Nat
sumB = gfoldB {Nat} {\ y -> Nat} {\ y -> Nat} Z add (\ x -> x)

We can see the higher-order fold hfoldB is indeed an instance of the generalized fold gfoldB. Moreover, gfoldB can
be used to define functions such as sumB.

Higher-order folds Johann and Ghani show that the higher-order folds such as hfoldB can be used to define
functions such as sumB ([I5], [I6]). The intuitive idea is instead of defining the summation function directly, one uses
hfoldB to define the following auxiliary function sumAux first, and define sumB’ based on sumAux.

sumAux : {a : Set} -> Bush a -> (a -> Nat) -> Nat
sumAux {a} = hfoldB {a} {\ a -> (a -> Nat) -> Nat}
(\Nx->2Z) (\xkf->add (£fx) &k \Nr->r f)))

sumB’ : Bush Nat -> Nat
sumB’ 1 = sumdux 1 (\ y -> y)

When defining sumAux, we instantiate the type variable p in hfoldB with \ a -> (a -> Nat) -> Nat. Johann and
Ghani generalize the pattern of sumAux and show how it is related to an advanced concept called Kan extensions
from category theory [I5].

Comparison of dependently typed folds, generalized folds and higher-order folds. We already men-
tioned that dependently typed folds can be specialized to higher-order folds, and that dependently typed folds does
not requires map functions, and that map functions can be defined by dependently typed folds, and that dependently
typed folds are defined using well-founded recursion, and that dependently typed folds correspond to the induction
principles.

Mendler-style iterators Abel, Matthes and Uustalu propose to use a generalized version of Mendler-style
iteration [I§] to program with nested data types ([1], [2]). The intuitive idea is that one first defines nested data
types as recursive types, i.e. the fix points of higher-order functors. For example, the Bush data type is encoded as
the following Bush’ with the constructors BNil and BCons.

data Mu (F : (Set -> Set) -> (Set -> Set)) (a : Set) : Set where
In : F MuF) a->MuF a

BushF : (Set -> Set) -> (Set -> Set)

BushF B a = Unit + a * (B (B a))

Bush’ : Set -> Set

Bush’ = Mu BushF

BNil : {a : Set} -> Bush’ a

BNil = In (Inl unit)

BCons : {a : Set} -> a -> Bush’ (Bush’ a) -> Bush’ a

BCons x xs = In (Inr (Times x xs))

Note that the data type Mu is not strictly-positive in Agda, we have to use the unsafe flag --no-positivity to make
Agda accept the above code.

One then defines the following generalized Mendler-style iterator gIt. The iterator gIt uses a generalized im-
predicative type abstraction mon.

mon : (Set -> Set) -> (Set -> Set) -> (Set -> Set) -> Set
mon FHG={ab:Set} > (a->Hb) >Fa->Gb

gIt : {F : (Set -> Set) -> (Set -> Set)} {H G : Set -> Set} —>
({X : Set -> Set} > mon X H G -> mon (F X) H G) —->
mon (Mu F) H G

glt s £ (Int) = s (glt s) £t

We have to use the unsafe flag ——type-in-type to make Agda accept the definition of mon. Moreover, another unsafe
flag --no-termination is needed because the termination of gIt is not obvious for Agda.
The sumAux’ function and the map function mapBush can be defined from gIt.
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sumAux’ : {a : Set} -> (a -> Nat) -> Bush’ a -> Nat
sumAux’ {a} = gIt {BushF} {\ x -> Nat} {\ x -> Nat}
A\ {X}r {a} {b} £ t >
match t (\ x -> 2)
(\ p -> add (£ (p1l p))
(r {X a} {b} (r {a} {p} £) (P2 p)))) {a} {a}

mapBush : {X Y : Set} -> (X -> Y) -> (Bush’ X -> Bush’ Y)

mapBush = mfold bushF In

Although in Agda, the Mu data type is not strictly positive, the definition of mon requires impredicative polymor-
phism and the definition of gIt is not obviously terminating, Abel et. al. [I] show that the recursive types together
with the generalized Mendler-style iterators can be encoded in Girard’s F,, [13]| using a syntactic version of Kan
extensions, hence the programs defined by the generalized Mendler-style iterators are still terminating.

Induction principles for Mendler-style iterators Matthes proposes to use a system called LNMIt (logic for
natural Mendler-style iteration of rank 2) [I7, Fig. 1.] to reason about programs defined by Mendler-style iterators.
The LNMIt consists of the usual constants such as In and gIt, it also contains the special constants for map and
induction. Although the map constant and the iterator gIt come with reduction rules, there is no such rule for
the induction constant. The type of the induction constant contains the map constant, and the induction constant
provides a mean to show a property holds for the data types defined from Mu. It is unclear to us how the induction
constant in LNMIt is related to the iterator gIt. Matthes [I7, §5] proves in Coq that LNMIt can be defined within
the Calculus of Inductive Construction [10] with the additional axioms of impredicative Set and proof irrelevance.

Comparison of dependently typed folds, generalized Mendler-style iterators and LNNMIt. Both
dependently typed folds and generalized Mendler-style iterators enable total programming with iterators, and allow
maps functions to be defined from the iterators. The approach of generalized Mendler-style iterators requires working
with recursive types instead of the usual inductive definitions, it has the advantage of not imposing any positivity
constraint for the data types. The dependently typed folds approach requires working with the inductive definitions
of data types, it is limited to a subclass of strictly positive data types. As for the verification of programs involving
nested data types, the justification of System LNMIt requires impredicative Set and proof irrelevance, while the
induction principles obtained from dependently typed folds work directly in total Agda and does not requires the
axioms of impredicative Set and proof irrelevance.

Other related work from type theory The main technique we use to realize dependently typed folds is called
large elimination in the dependent types literature ([3], [19]), i.e. computing types by pattern-matching on values.
Werner shows that the inductive reasoning in the Calculus of Inductive Construction is consistent [20]. Modern
dependently typed languages such as Agda, Coq allow user-defined regular/nested data types and well-founded
recursive function definitions [§], this enables us to define the dependently typed folds, their corresponding induction
principles and various type-level functions.

7 Conclusion and future work

We show how to define dependently typed folds for nested data types and how to specialize them to the corresponding
higher-order folds. Dependently typed folds can be used to define maps, and other terminating functions. They give
rise to the induction principles, similar to the folds for regular data types. We show how to use induction principles
to reason about the programs involving nested data types. We also discuss how dependently typed folds give rise to
the indexed representations and how to obtain the Church encodings of the indexed representations.

For future work, we would like to formalize a general procedure to obtain the direct dependently typed folds. We
would also like to consider the meta-theoretic properties of dependently typed folds. For example, it would be nice
to be able to prove a meta-theorem stating that any higher-order fold obtained from the direct dependently typed
fold will have the same computational behavior as the higher-order fold obtained from general recursion.
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