
11

Proto-Quipper with Dynamic Lifting

PENG FU, Dalhousie University, Canada

KOHEI KISHIDA, University of Illinois at Urbana-Champaign, USA

NEIL J. ROSS, Dalhousie University, Canada

PETER SELINGER, Dalhousie University, Canada

Quipper is a functional programming language for quantum computing. Proto-Quipper is a family of languages
aiming to provide a formal foundation for Quipper. In this paper, we extend Proto-Quipper-M with a construct
called dynamic lifting, which is present in Quipper. By virtue of being a circuit description language, Proto-
Quipper has two separate runtimes: circuit generation time and circuit execution time. Values that are known
at circuit generation time are called parameters, and values that are known at circuit execution time are called
states. Dynamic lifting is an operation that enables a state, such as the result of a measurement, to be lifted
to a parameter, where it can influence the generation of the next portion of the circuit. As a result, dynamic
lifting enables Proto-Quipper programs to interleave classical and quantum computation. We describe the
syntax of a language we call Proto-Quipper-Dyn. Its type system uses a system of modalities to keep track
of the use of dynamic lifting. We also provide an operational semantics, as well as an abstract categorical
semantics for dynamic lifting based on enriched category theory. We prove that both the type system and the
operational semantics are sound with respect to our categorical semantics. Finally, we give some examples of
Proto-Quipper-Dyn programs that make essential use of dynamic lifting.

CCS Concepts: • Theory of computation→ Type theory; Program semantics.

Additional Key Words and Phrases: Quipper, Proto-Quipper, quantum programming languages, dynamic
lifting, categorical semantics

ACM Reference Format:

Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger. 2023. Proto-Quipper with Dynamic Lifting. Proc. ACM
Program. Lang. 7, POPL, Article 11 (January 2023), 26 pages. https://doi.org/10.1145/3571204

1 INTRODUCTION

1.1 Quipper and Proto-Quipper

Quipper is a functional programming language for quantum computing [Green et al. 2013a,b]. The
overall aim of Quipper is to allow quantum algorithms to be specified at a level of abstraction that
is similar to how the algorithm might be described in a research paper, and to compile this down
to the level of individual quantum gates, producing a logical quantum circuit. Quipper has been
used to program a set of nontrivial algorithms from the quantum computing literature, and it has
been used to generate quantum circuits consisting of trillions of gates. As a circuit description
language, Quipper shares some of the traits of hardware description languages. In particular, it
has two notions of runtime: The first of these is circuit generation time. This is when a Quipper
program is run to generate a quantum circuit. The second is circuit execution time. This is when a
quantum circuit is executed by a quantum computer or a simulator.

Authors’ addresses: Peng Fu, Dalhousie University, Canada, frank-fu@dal.ca; Kohei Kishida, University of Illinois at Urbana-

Champaign, USA, kkishida@illinois.edu; Neil J. Ross, Dalhousie University, Canada, neil.jr.ross@dal.ca; Peter Selinger,

Dalhousie University, Canada, selinger@mathstat.dal.ca.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/1-ART11

https://doi.org/10.1145/3571204

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3571204
https://doi.org/10.1145/3571204

11:2 Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger

Quipper is a practical language, implemented as an embedded language in Haskell. As such,
it lacks formal foundations such as operational and denotational semantics. This motivates the
development of Proto-Quipper, a family of experimental languages that aim to provide formal
semantics for fragments of Quipper. Proto-Quipper-S features a linear type system with subtyping
as well as an operational semantics [Ross 2015]. Proto-Quipper-M has a linear type system without
subtyping, but with a sound categorical semantics in addition to its operation semantics [Rios and
Selinger 2018]. More recently, Proto-Quipper-D was introduced, which features a type system with
linear dependent types as well as a fibrational categorical semantics [Fu et al. 2020b,a].

1.2 Dynamic Lifting and the Interaction of the Two Runtimes

Proto-Quipper, like Quipper, distinguishes two runtimes. Moreover, Proto-Quipper gives a formal
account of parameters and states. A parameter is a value that is known at circuit generation time,
such as a boolean value for an if-then-else expression. A state is a value that is only known at circuit
execution time, such as the actual state of a qubit or classical bit in a circuit. The type system of
Proto-Quipper reflects this distinction. Among the types, there is a subset of parameter types, such
as Nat and Bool, whose elements can be duplicated and discarded. There is also a subset of state
types, such asQubit and Bit, which are linear so that their elements cannot in general be duplicated
or discarded. One of the fundamental design decisions of Proto-Quipper is that parameter types
and state types belong to the same universe of types, so that one can form compound types that
are part parameter and part state. An example of this is the type Bool ⊗Qubit, whose elements are
pairs of a boolean (a parameter) and a qubit (a state). Another example is the type of lists of qubits.
Here, the length of the list is a parameter (known at circuit generation time), but the actual qubits
in the list are states (known at circuit execution time). In this way, Proto-Quipper differs, e.g., from
QWire, an embedded quantum circuit description language in which parameters and states belong
to separate universes [Paykin et al. 2017].
In Quipper, the two runtimes can interact with each other. A priori, it is clear that states can

depend on parameters. For example, we can initialize a qubit based on a boolean parameter, simply
by inserting a gate at circuit generation time to initialize the qubit in one state or another. The
opposite direction is more complicated. Usually, circuit execution happens after circuit generation,
and in this case, it is clear that a state cannot be converted to a parameter. However, there are some
quantum algorithms that require circuit generation and circuit execution to be interleaved. Here, a
state, such as the outcome of a measurement in a circuit, may be used to inform the generation
of the next part of the circuit. To enable such interleaving, Quipper provides a construct called
dynamic lifting, which enables a state to be lifted to a parameter in certain situations. For example,
dynamic lifting permits the result of a measurement, which is a state of type Bit, to be lifted to a
parameter of type Bool. It is important to note that dynamic lifting is an expensive operation, as it
requires control to pass from circuit evaluation time back to circuit generation time. This requires
the real-time quantum computer to put all of its active qubits into long-term storage while spending
an indeterminate amount of time awaiting further instructions from the classical computer in
charge of circuit generation.

Dynamic lifting is important because it can be used to express quantum algorithms that require
interleaving circuit execution time and circuit generation time. While there are many quantum
algorithms that do not require such interleaving, there are some that do. An example is magic state

distillation [Bravyi and Kitaev 2005]. Here, the goal is to prepare a qubit in some target state. We
start with a large number of qubits, say 𝑛 of them, each of which is a rough approximation of the
target state. We then apply a probabilistic łdistillationž procedure which yields on average, say,
𝑛/4 qubits that are better approximations of the target state; the remaining qubits are wasted. By
repeated distillation steps, we eventually wind up with a small number of qubits that are excellent

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

Proto-Quipper with Dynamic Lifting 11:3

approximations of the target state. In such a situation, dynamic lifting is essential because after
each distillation step, we must throw away the wasted qubits, but we do not know ahead of time
which ones (or indeed, how many) there will be. Thus which future gates will be applied depends
on the outcomes of previous measurements. With the help of dynamic lifting, these algorithms can
be naturally expressed as functions in the programming language.

The concept of dynamic lifting is different frommeasurement, and the two should not be confused.
Measurement is merely a gate in a circuit, turning a quantum bit (a state) into a classical bit (also a
state). Dynamic lifting is an operation of the programming language, turning a classical bit (a state)
into a boolean (a parameter).

1.3 A Type System for Dynamic Lifting

Previous versions of Proto-Quipper lacked dynamic lifting. Modeling dynamic lifting is a challenging
problem. To better understand the issues involved, it is useful to know that there are two things
that can be done with circuits in Proto-Quipper. On the one hand, circuits can be run on a quantum
device. On the other hand, circuits can be boxed. A boxed circuit is a data structure that contains a
circuit that has already been generated, i.e., an actual list of gates, rather than merely instructions for
how to generate such a list. As a result, a boxed circuit can be used as a building block for all kinds of
things. In the simplest case, it can be re-used in the construction of other circuits. But it can also be
inspected and manipulated in other ways, such as by applying gate transformations (systematically
replacing gates by other gates), by adding things like error correction, or by rewriting the circuit to
simplify it, among many other possibilities. Boxed circuits can also be reversed, which is used in
many quantum algorithms, for example to uncompute ancillas. The ability to box circuits is crucial
to Quipper’s ability to express algorithms at a natural level of abstraction, because algorithms are
often described in terms of meta-operations on circuits.
Now it is clear that dynamic lifting only makes sense in the context of a circuit that is actually

being executed, rather than one that is merely being boxed. We will keep track of this in the
programming language by adding a modality to the type system and a corresponding monad to the
semantics. The modality should be thought of as denoting łboxabilityž. For example, a function
of typeQubit ⊸1 Qubit represents a circuit that can be boxed or executed, i.e., that does not use
dynamic lifting, whereas a function of type Qubit ⊸0 Qubit represents a quantum operation that
can only be executed but not boxed.
Before we can describe the operational or denotational semantics of Proto-Quipper-Dyn, we

must be more precise about what we mean by a łcircuitž. We must also specify what it means to
łexecutež a circuit. There are many different notions of circuits, differing, for example, in which
collection of gates is provided. Rather than specializing to one of these, we take a more general
point of view: a circuit is simply a morphism in a small symmetric monoidal categoryM, which we
assume to be given ahead of time, but otherwise arbitrary (subject to some properties). Similarly,
for the execution of circuits, we assume given another small symmetric monoidal category Q of
quantum operations. Conceptually, the morphisms of M are syntactic entities; thus, M is typically a
category that is free generated (say by a collection of gates). On the other hand, we think of the
morphisms of Q as physical operations, which can be performed on a quantum computer. The
categoriesM and Q have the same objects, and there is a symmetric monoidal interpretation functor

𝐽 : M → Q.
Operationally, dynamic lifting is an operation that reads the state of a bit in Q, and returns a

boolean value. Since a bit state can be the result of a measurement, the read operation for dynamic
lifting is nondeterministic, i.e., it can return different boolean values with probabilities governed
by measurements. The nondeterministic nature of the dynamic lifting suggests that it should be
modeled as a monadic operation [Moggi 1991].

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

11:4 Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger

We therefore conceptualize the types of Proto-Quipper-Dyn as the objects of a single category
A, with a monad𝑇 : A → A, called the dynamic lifting monad. This will be done in such a way that
M is fully embedded in A, and Q is fully embedded in the Kleisli category 𝐾𝑙𝑇 (A), in a way that
makes the following diagram commute.

M A

Q 𝐾𝑙𝑇 (A)

𝜓

𝐽 𝐸

𝜙

Here, 𝐽 is the given interpretation functor, and 𝐸 is the canonical functor from A to 𝐾𝑙𝑇 (A). We
then model dynamic lifting as a map dynlift : Bit → 𝑇Bool ∈ 𝐾𝑙𝑇 (A) such that the following
diagram commutes.

Bit

Bool 𝑇Bool

dynlift

𝜂

init

Note that dynamic lifting is a morphism of the Kleisli category; this makes sense because it is
essentially a side-effecting read operation. More generally, any computation that potentially uses
dynamic lifting will have type 𝐴 → 𝑇𝐵.
As mentioned above, our type system must also distinguish quantum circuits that are being

executed from quantum circuits that are being boxed. Naturally, since the latter may not use
dynamic lifting, they are maps in the category A while the former are maps in the Kleisli category
𝐾𝑙𝑇 (A). As a practical matter for programmer convenience, it would be awkward to have 𝑇 as an
explicit type constructor that must be mentioned everywhere in the program. Instead, we use a
system of modalities to keep track of the dynamic lifting monad 𝑇 . More specifically, we annotate
a typing judgment with a modality, i.e., Γ ⊢𝛼 𝑀 : 𝐴, where 𝛼 ∈ {0, 1}. When 𝛼 = 0, it means that
the term 𝑀 represents a morphism JΓK → 𝑇 J𝐴K in the Kleisli category 𝐾𝑙𝑇 (A). When 𝛼 = 1, it
means that the term𝑀 represents a morphism JΓK → J𝐴K in A. An example of the typing rule for
dynamic lifting is the following (where Meas : Qubit → Bit represents the measurement gate).

ℓ : Qubit ⊢1 Meas(ℓ) : Bit
ℓ : Qubit ⊢0 dynlift(Meas(ℓ)) : Bool

If we have a quantum circuit Qubit → Bit, it can be run by a quantum computer and the measure-
ment result of type Bit will be lifted to a parameter of type Bool. Note that the dynlift operation
sets the modality of the typing judgment to 0, and as a result, we have a mapQubit → 𝑇Bool in
the Kleisli category. The use of modalities in our type system ensures that the termMeas(ℓ) can be
turned into a boxed circuit, whereas it will be a compile time typing error to try to box the term
dynlift(Meas(ℓ)).

1.4 Operational Semantics

Next, let us take a look at the operational semantics of Proto-Quipper-Dyn. In previous versions of
Proto-Quipper, the operational semantics used configurations of the form (C, 𝑀), where C is the
circuit being currently constructed, and𝑀 is a term. On the other hand, in the quantum lambda
calculus [Selinger and Valiron 2009], which is not a circuit construction language but intended to
run directly on a quantum computer, the operational semantics used configurations of the form
(𝑄,𝑀), where 𝑄 is the current quantum state and𝑀 is a term.
In a sense, Proto-Quipper-Dyn is a combination of these prior languages: it is a language for circuit

construction (via the boxing operation), but it is also a language for running quantum operations

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

Proto-Quipper with Dynamic Lifting 11:5

(as otherwise dynamic lifting would not be possible). Consequently, our operational semantics uses
both kinds of configurations: those of the form (𝑄,𝑀) are only used for top-level computations
that actually run on a quantum device, and those of the form (C, 𝑀) are used during boxing. These
two kinds of configurations correspond closely to the two runtimes, since configuration of the form
(C, 𝑀) are used for circuit construction and those of the form (𝑄,𝑀) are used for circuit execution.
They also correspond to the two categories M and Q.

Consequently, the evaluation rules take two different forms. Evaluation at circuit generation
time takes the form (C, 𝑀) ⇓ (C′,𝑉), where C is a circuit. The type system ensures that such an
evaluation does not involve dynamic lifting, so it can be done entirely with a classical computer
and the evaluation is deterministic. On the other hand, evaluation at circuit execution time takes
the form (𝑄,𝑀) ⇓ ∑

𝑖 𝑝𝑖 (𝑄𝑖 ,𝑉𝑖), where 𝑄 represents a quantum state. Since 𝑀 can use dynamic
lifting, the result of such an evaluation rule is probabilistic, with outcome (𝑄𝑖 ,𝑉𝑖) happening with
probability 𝑝𝑖 .

1.5 Related Work

A common misunderstanding is that dynamic lifting means performing measurements during the
execution of a quantum program. That would not be a new feature; indeed, the ability to perform
on-the-fly measurements was already present in the earliest quantum programming languages, such
as [Ömer 1998; Selinger 2004; Selinger and Valiron 2009]. Rather, dynamic lifting is an operation
that only makes sense in the context of a circuit description language, where circuits are not executed
during the circuit generation phase. Dynamic lifting is the transfer of information from the circuit
execution environment back to the circuit generation environment. Therefore, in the following
discussion of related work, we do not include comparisons with most papers on languages that
include measurement but do not have separate circuit generation and circuit execution times.

One of the features of the present work, and of Proto-Quipper in general, is that it works with the
standard notion of quantum circuits [Nielsen and Chuang 2002], which are basically lists of gates,
or more precisely, gates that have been composed using the laws of symmetric monoidal categories.
By contrast, some of the other notions of dynamic lifting that appear in the literature not only add
features to the programming language, but also to the generated circuits themselves. Relatedly,
one of the features that makes boxed circuits useful in Proto-Quipper is that they are actual data
structures. Here, by a łdata structurež, we mean data that can be queried, for example via a case
distinction or pattern matching. This is different from a łthunkž, such as a lambda abstraction,
which represents a suspended computation. Some of the alternative notions of dynamic lifting
that appear in the literature make dynamic lifting part of the circuit language, allowing circuits
containing dynamic lifting to be boxed. This turns circuits into thunks.

In recent work, [Lee et al. 2021] extended Proto-Quipper with a version of dynamic lifting. They
work with a single runtime modeled by a category of quantum channels, which are generalizations
of quantum circuits with a notion of branching for measurement results. A quantum channel is
a list of gates like a quantum circuit, with the important exception that if the current gate is a
measurement, the list has two tails, one for each possible measurement outcome. Consequently,
the channels of Lee et al. must either be implemented as thunks, or as data structures that are
exponentially large. The main difference with our work is that in our setting, dynamic lifting
ensures that boxed circuits are data structures that contain only one branch (namely, the one
corresponding to the actual measurement result when the circuit is run), whereas in Lee et al.’s
setting, either all branches are evaluated, or the circuit is a thunk.
Another version of Proto-Quipper incorporating a form of dynamic lifting was proposed by

[Colledan and Dal Lago 2022]. Their language uses a very general version of dynamic lifting, which
is even more general than the one present in the Quipper language, and allows for measurements

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

11:6 Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger

to be conditional on the outcomes of prior measurements. As a consequence, the output type
of their circuit can depend on the outcomes of the measurements specified in the computation.
They also work with a single runtime where dynamic lifting is part of their generalized notion of
quantum circuits. While this alternative notion of dynamic lifting is interesting in its own right,
their language does not come equipped with a denotational semantics.

QWire [Paykin et al. 2017] is a quantum programming language that also supports dynamic lifting.
QWire has a host language and a circuit language. The host language describes the computation
of the classical computer, while the circuit language describes the computation of the quantum
computer. QWire has a denotational semantics for the circuit language, but not for the host language.
Dynamic lifting is part of the syntax in the circuit language. Therefore QWire’s notion of quantum
circuits differs from Proto-Quipper’s notion. Besides dynamic lifting, QWire also has a notion
of static lifting in the form of a łrunž function. This allows measuring all the qubits in a circuit,
returning boolean values to the host language, without leaving any unmeasured quantum state. By
contrast, Proto-Quipper-Dyn does not require a run function, since it does not have separate host
and circuit languages. All circuits that are not constructed inside a box are automatically executed,
and dynamic lifting can be used to bring measurement results into the control flow of the language.
We use enriched category theory to describe our categorical model for dynamic lifting. There

are some existing works that also use enriched categories in the context of quantum programming
languages. For example, [Lindenhovius et al. 2018] use CPO-enrichment to model a version of
Proto-Quipper-M with recursion. The main difference between our model and that of Lindenhovius
et al. is that our model accounts for dynamic lifting while their model accounts for recursion.
[Rennela and Staton 2020] give a categorical model for a QWire-like language that also uses
enriched categories. Their language allows boxing a circuit that uses dynamic lifting, which is quite
different from how boxing works in Proto-Quipper. As a result, circuits in their setting are thunks
and not data structures. Also, in Rennela and Staton’s EWire language, the host language does not
include wire types such as a type of qubits, whereas Proto-Quipper does not have separate host
and circuit languages, and includes all types in a single language. Consequently, Proto-Quipper has
a linear type system, whereas the EWire host language does not. This difference is also reflected
in the model: in Rennela and Staton’s semantics, programs are interpreted in a cartesian-closed
category, whereas in our model, they are interpreted in a monoidal category.
The fact that Proto-Quipper has two distinct runtimes (circuit generation time and circuit

execution time) suggests a possible connection to another computational paradigm that also has
multiple runtimes, namely multi-staged computation [MetaOCaml 2020; Taha and Sheard 2000].
However, there are some important differences. One of them is that multi-staged computation,
such as in MetaML [Taha and Sheard 2000], deals with potentially many levels, but all of the levels
share the same operations and the same hardware; the primary purpose of staging is to precisely
orchestrate the order in which operations are evaluated. On the other hand, the main purpose of
dynamic lifting in Proto-Quipper is to interleave computations from two different hardware models.
The łmeta-languagež of Proto-Quipper terms has almost nothing in common with the łobject
languagež of circuits. Each of the two stages has its own distinct operations: classical expressions
and control flow for the meta-language, and gates and measurements for the object language. In
particular, quantum circuits are not just code for expressions of the meta-language.
Finally, we will mention the quantum programming language Silq [Bichsel et al. 2020]. Like

Proto-Quipper-Dyn, Silq also uses modalities to keep track of the use of certain operations. For
example, the modality łmfreež in Silq is used to indicate whether a computation uses measurement.
The difference is that Silq is not a circuit description language, so it does not have a notion of boxed
circuits or dynamic lifting.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

Proto-Quipper with Dynamic Lifting 11:7

1.6 Contributions

In this paper, we describe the syntax and type system of an extension of Proto-Quipper with
dynamic lifting, called Proto-Quipper-Dyn. The type system uses a system of modalities to keep
track of the use of dynamic lifting. We also provide an operational semantics, using two different
kinds of configurations to model circuit generation time and circuit execution time. We further
provide an abstract categorical semantics for this language, in which dynamic lifting is modeled
by a map Bit → 𝑇Bool, where 𝑇 is a monad encapsulating circuit execution. By an łabstractž
categorical semantics, we mean that we only state the properties that a categorical model must
satisfy to give a sound interpretation of the language, without constructing an actual concrete
example of such a model. We give such a concrete model in a companion paper [Fu et al. 2022a].

The rest of the paper is organized as follows: In Section 2, we briefly recall the basics of enriched
category theory, and then we give an axiomatization of a general categorical semantics for dynamic
lifting. In Section 3, we define a type system for dynamic lifting that uses a system of modalities. We
then show how a typing judgment with modalities is interpreted as a morphism in our categorical
model. In Section 4, we define a call-by-value big-step operational semantics for our language.
We show that the operational semantics satisfies type preservation and that the type system
guarantees error freeness. We also show that the operational semantics is sound with respect to
the enriched categorical semantics. In Section 5, we give some applications of dynamic lifting in
Proto-Quipper-Dyn. We finish the paper with some concluding remarks in Section 6.

2 AN ENRICHED CATEGORICAL SEMANTICS FOR DYNAMIC LIFTING

In this section we will give a general categorical semantics for dynamic lifting. Our categorical
semantics is based on enriched categories, which are generalizations of ordinary categories. In
enriched categories, instead of hom-sets, one works with hom-objects, which are objects in a
monoidal category.

Definition 2.1. Let V be a monoidal category. A V-enriched category A (or V-category for short)
is given by the following:

• A class of objects, also denoted A.
• For any 𝐴, 𝐵 ∈ A, an object A(𝐴, 𝐵) inV .
• For any 𝐴 ∈ A, a morphism in 𝑢𝐴 : 𝐼 → A(𝐴,𝐴) inV , called the identity on 𝐴.
• For any 𝐴, 𝐵,𝐶 ∈ A, a morphism 𝑐𝐴,𝐵,𝐶 : A(𝐴, 𝐵) ⊗ A(𝐵,𝐶) → A(𝐴,𝐶) in V , called composi-

tion.
• The composition and identity morphisms must satisfy suitable diagrams in V (see [Borceux
1994; Kelly 1982]).

Remarks. • Many concepts from non-enriched category theory can be generalized to the
enriched setting. For example,V-functors,V-natural transformations, V-adjunctions and
the V-Yoneda embedding are all straightforward generalizations of their non-enriched
counterparts. We refer to [Borceux 1994; Kelly 1982] for comprehensive introductions.

• In the rest of this paper, when we speak of a map 𝑓 : 𝐴 → 𝐵 in a V-enriched category A,
we mean a morphism of the form 𝑓 : 𝐼 → A(𝐴, 𝐵) in V . Furthermore, when 𝑔 : 𝐵 → 𝐶 is
another map in A, we write 𝑔 ◦ 𝑓 : 𝐴 → 𝐶 as a shorthand for

𝐼
𝑓 ⊗𝑔
−−−→ A(𝐴, 𝐵) ⊗ A(𝐵,𝐶) 𝑐−→ A(𝐴,𝐶).

• A V-enriched category A gives rise to an ordinary category 𝑉 (A), called the underlying
category1 of A, where the objects of 𝑉 (A) are objects of A and a hom-set is defined as

1𝑉 stands for łunderlyingž because the letter𝑈 serves another purpose in this paper.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

11:8 Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger

𝑉 (A) (𝐴, 𝐵) := V(𝐼 ,A(𝐴, 𝐵)) for any 𝐴, 𝐵 ∈ 𝑉 (A). Similarly, a V-functor 𝐹 : A → B gives
rise to an ordinary functor 𝑉𝐹 : 𝑉 (A) → 𝑉 (B) and aV-natural transformation 𝛼 : 𝐹 → 𝐺

gives rise to an ordinary natural transformation 𝑉𝛼 : 𝑉𝐹 → 𝑉𝐺 .

Ordinary symmetric monoidal categories can be generalized to enriched categories as well.

Definition 2.2. LetV be a symmetric monoidal category. AV-category A is symmetric monoidal
if it is equipped with the following:

• There is an object 𝐼 ∈ A called the tensor unit. For any 𝐴, 𝐵 ∈ A, there is an object 𝐴 ⊗ 𝐵 ∈ A.
Moreover, for any 𝐴1, 𝐴2, 𝐵1, 𝐵2 ∈ A, there is a morphism

Tensor : A(𝐴1, 𝐵1) ⊗ A(𝐴2, 𝐵2) → A(𝐴1 ⊗ 𝐴2, 𝐵1 ⊗ 𝐵2)
inV . The tensor product is a bifunctor in the sense that Tensor◦(𝑢𝐴⊗𝑢𝐵) = 𝑢𝐴⊗𝐵 for the iden-
tity maps 𝑢𝐴, 𝑢𝐵, 𝑢𝐴⊗𝐵 , and the following diagram commutes for any𝐴1, 𝐴2, 𝐵1, 𝐵2,𝐶1,𝐶2 ∈ A.

A(𝐴1, 𝐵1) ⊗ A(𝐴2, 𝐵2) ⊗ A(𝐵1,𝐶1) ⊗ A(𝐵2,𝐶2) A(𝐴1,𝐶1) ⊗ A(𝐴2,𝐶2)

A(𝐴1 ⊗ 𝐴2, 𝐵1 ⊗ 𝐵2) ⊗ A(𝐵1 ⊗ 𝐵2,𝐶1 ⊗ 𝐶2) A(𝐴1 ⊗ 𝐴2,𝐶1 ⊗ 𝐶2)

𝑐⊗𝑐

Tensor⊗Tensor Tensor

𝑐

• There are the following V-natural isomorphisms in A and they satisfy the same coherence
diagrams for symmetric monoidal categories.

𝑙𝐴 : 𝐼 ⊗ 𝐴 → 𝐴

𝑟𝐴 : 𝐴 ⊗ 𝐼 → 𝐴

𝛾𝐴,𝐵 : 𝐴 ⊗ 𝐵 → 𝐵 ⊗ 𝐴
𝛼𝐴,𝐵,𝐶 : (𝐴 ⊗ 𝐵) ⊗ 𝐶 → 𝐴 ⊗ (𝐵 ⊗ 𝐶)

If the V-category A is symmetric monoidal, then its underlying category 𝑉 (A) is symmetric
monoidal. For any maps 𝑓 : 𝐴1 → 𝐵1, 𝑔 : 𝐴2 → 𝐵2 in A, we write the map 𝑓 ⊗𝑔 : 𝐴1 ⊗𝐴2 → 𝐵1 ⊗𝐵2
as a shorthand for the following composition.

𝐼
𝑓 ⊗𝑔
−−−→ A(𝐴1, 𝐵1) ⊗ A(𝐴2, 𝐵2)

Tensor−−−−−→ A(𝐴1 ⊗ 𝐴2, 𝐵1 ⊗ 𝐵2)

2.1 An Axiomatization of Enriched Categorical Models of Dynamic Lifting

In the following, we assumeV to be a cartesian closed category with coproducts. For any𝐴, 𝐵 ∈ V ,
we write 𝐴 × 𝐵 for the cartesian product, 𝐴 ⇒ 𝐵 for the exponential object, and 1 ∈ V for the
terminal object. SinceV is cartesian closed, it is self-enriched, i.e.,V is aV-category where the
hom-objects are defined by V(𝐴, 𝐵) := 𝐴 ⇒ 𝐵.
We will now focus on defining aV-enriched category A that models dynamic lifting. We give

a sequence of definitions that specify a sequence of properties (a)-(h), which will culminate in
Definition 2.8 of a model for Proto-Quipper with dynamic lifting.

Definition 2.3. AV-category A is a linear-non-linear programming language model if

(a) A has coproducts and is symmetric monoidal closed, i.e., it is symmetric monoidal and there
is aV-adjunction − ⊗ 𝐴 ⊣ 𝐴 ⊸ − for each 𝐴 ∈ A.

(b) A is equipped with a V-adjunction

𝑝 : V → A ⊣ ♭ : A → V
such that 𝑝 is a strong monoidal V-functor.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

Proto-Quipper with Dynamic Lifting 11:9

Remarks. • The requirement that A has coproducts and is symmetric monoidal closed implies
that it can model function types and sum types in a functional programming language.
Moreover, since − ⊗ 𝐴 is a left adjoint V-functor for any 𝐴 ∈ A, it preserves the coproducts,
so the tensor products distribute over coproducts in A.

• The adjunction in (b) is often called a linear-non-linear adjunction [Benton 1995]. Here, the
assumption that 𝑝 is a strong monoidal V-functor means that there exist isomorphisms
𝑒 : 𝐼 → 𝑝1 and𝑚 : 𝑝𝑋 ⊗ 𝑝𝑌 → 𝑝 (𝑋 × 𝑌) making some diagrams commute (see [Fu et al.
2022b, Appendix A]).

• Since 𝑝 is strong monoidal and V is cartesian, for any 𝑋 ∈ V , there are maps discard𝑋 :

𝑝𝑋 → 𝐼 and dup𝑋 : 𝑝𝑋 → 𝑝𝑋 ⊗ 𝑝𝑋 in A. Moreover, for any map 𝑓 : 𝑋 → 𝑌 in V , we have
the following in A.

dup𝑌 ◦ 𝑝 𝑓 = (𝑝𝑓 ⊗ 𝑝𝑓) ◦ dup𝑋
We call objects of the form 𝑝𝑋 ∈ A parameter objects, since they can be duplicated and
discarded. For example, Bool := 𝐼 + 𝐼 � 𝑝1 + 𝑝1 � 𝑝 (1 + 1) is a parameter object.

• For any 𝑋 ∈ V, 𝐵 ∈ A, we write 𝛿 for the isomorphism 𝛿 : A(𝑝𝑋, 𝐵) � V(𝑋, ♭𝐵), and force𝐵
for the counit force𝐵 : 𝑝♭𝐵 → 𝐵.

Definition 2.4. A convex space is a set 𝑋 equipped with a convex sum operation, which assigns
to any 𝑥,𝑦 ∈ 𝑋 and 𝑝, 𝑞 ∈ [0, 1] such that 𝑝 + 𝑞 = 1 an element 𝑝𝑥 + 𝑞𝑦 ∈ 𝑋 , subject to certain
standard conditions, which are detailed in [Fu et al. 2022b, Appendix B]. A category is enriched
in convex spaces if each hom-set is equipped with the structure of a convex space, and moreover,
composition is bilinear with respect to convex sum, i.e., (𝑝 𝑓 + 𝑞𝑔) ◦ ℎ = 𝑝 (𝑓 ◦ ℎ) + 𝑞(𝑔 ◦ ℎ) and
ℎ ◦ (𝑝 𝑓 + 𝑞𝑔) = 𝑝 (ℎ ◦ 𝑓) + 𝑞(ℎ ◦ 𝑔).

As mentioned in the introduction, Proto-Quipper-Dyn is parameterized by two (ordinary) small
categories M and Q of circuits and quantum operations, respectively. We now specify the properties
that these categories must satisfy.

Assumption 2.5. We assume that we are given two small symmetric monoidal categories M and
Q, satisfying the following properties:

(1) M and Q have the same objects, including a distinguished object called Bit. The category M

has distinguished morphisms zero, one : 𝐼 → Bit.
(2) Q has a coproduct Bit = 𝐼 + 𝐼 , and the tensor product in Q distributes over this coproduct.
(3) There exists a given strict symmetric monoidal functor 𝐽 : M → Q that is the identity on

objects and 𝐽 (zero) = inj1 : 𝐼 → 𝐼 + 𝐼 , 𝐽 (one) = inj2 : 𝐼 → 𝐼 + 𝐼 . We call 𝐽 the interpretation
functor.

(4) The category Q is enriched in convex spaces.
(5) For any 𝐴 ∈ Q, and 𝑓 : 𝐼 → Bit ⊗ 𝐴 ∈ Q, we have 𝑓 = 𝑝1 (inj1 ⊗ 𝑓1) + 𝑝2 (inj2 ⊗ 𝑓2), where

inj1, inj2 : 𝐼 → 𝐼 + 𝐼 and 𝑝1, 𝑝2 ∈ [0, 1] are uniquely determined real numbers such that
𝑝1 + 𝑝2 = 1. When 𝑝𝑖 ≠ 0, the map 𝑓𝑖 : 𝐼 → 𝐴 is also unique.

The categoriesM andQ are not only used in the categorical semantics, but also in the operational
semantics of Proto-Quipper-Dyn (i.e., to run the program, we must know what a circuit is and
what a quantum operation is). Therefore, these categories should be regarded as given as part of
the language specification, rather than as a degree of freedom in the semantics. On the other hand,
nothing in the operational or denotational semantics depends on particular properties of M and Q

other than properties (1)ś(5) above. Therefore, Proto-Quipper-Dyn can handle a wide variety of
possible circuit models and physical execution models.
In practice, the category M will be a category of quantum circuits and the category Q will

be a category of quantum operations. These categories will typically have additional objects,

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

11:10 Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger

such as Qubit and perhaps Qutrit, and additional morphisms, such as 𝐻 : Qubit → Qubit and
Meas : Qubit → Bit. Assumption (5) means that any morphism with domain 𝐼 and a bit state in its
codomain is a convex sum of two morphisms. This property is used in the rule for dynamic lifting
in the operational semantics.

Definition 2.6. Suppose theV-enriched category A is a linear-non-linear programming model.
We say it supports box-unbox operations if the following hold.

(c) There is a fully faithful embedding𝜓 : M
𝜓
↩→ 𝑉 (A) and𝜓 is strong monoidal.

(d) Let S denote the set of objects in the image of𝜓 . For any 𝑆,𝑈 ∈ S, there is an isomorphism

♭(𝑆 ⊸ 𝑈) 𝑒
� A(𝑆,𝑈).

Condition (c) implies that there is a circuit subcategory in A. Using condition (d), we define

box = 𝑝 (𝑒) and unbox = 𝑝 (𝑒−1), and there is an isomorphism 𝑝♭(𝑆 ⊸ 𝑈)
box/unbox
� 𝑝A(𝑆,𝑈).

Elements of 𝑝A(𝑆,𝑈) correspond to boxed circuits with input 𝑆 and output𝑈 .
If aV-enriched category A satisfies (a)ś(d), then it is a model for Proto-Quipper without dynamic

lifting. For example, the Set-enriched categoryM in [Rios and Selinger 2018] is such a model. To
support dynamic lifting, we define the following monad to account for the category Q.

Definition 2.7. Let A be a symmetric monoidal V-category and let 𝑇 : A → A be a V-monad on
A. We say 𝑇 is a dynamic lifting monad if the following hold.

(e) 𝑇 is a commutative strong V-monad. For any 𝐴, 𝐵 ∈ A, we write 𝑡𝐴,𝐵 : 𝐴 ⊗ 𝑇𝐵 → 𝑇 (𝐴 ⊗ 𝐵)
for the strength and 𝑠𝐴,𝐵 : 𝑇𝐴 ⊗ 𝐵 → 𝑇 (𝐴 ⊗ 𝐵) for the costrength.

(f) Let 𝑉 (A) be the underlying category of A, let 𝑉𝑇 be the underlying monad of 𝑇 , and let
𝐾𝑙𝑉𝑇 (𝑉 (A)) be the Kleisli category of 𝑉𝑇 . The Kleisli category 𝐾𝑙𝑉𝑇 (𝑉 (A)) is enriched in
convex spaces.

(g) There are the following fully faithful embeddings:

M
𝜓
↩→ 𝑉 (A),

Q
𝜙
↩→ 𝐾𝑙𝑉𝑇 (𝑉 (A)) .

These embedding functors are strong monoidal, and 𝜙 preserves the convex sum. Moreover,
the following diagram commutes for any 𝑆,𝑈 ∈ M.

M(𝑆,𝑈) 𝑉 (A) (𝑆,𝑈)

Q(𝑆,𝑈) 𝐾𝑙𝑉𝑇 (𝑉 (A)) (𝑆,𝑈)

𝜓𝑆,𝑈

𝐽𝑆,𝑈 𝐸𝑆,𝑈

𝜙𝑆,𝑈

Here 𝐸 : 𝑉 (A) → 𝐾𝑙𝑉𝑇 (𝑉 (A)) is the the functor such that 𝐸 (𝐴) = 𝐴 and 𝐸 (𝑓) = 𝜂 ◦ 𝑓 .
(h) There are maps dynlift : Bit → 𝑇Bool and init : Bool → Bit in A such that the following

diagram commutes.

Bit

Bool 𝑇Bool

dynlift

𝜂

init

Remarks. • The objects of the Kleisli category 𝐾𝑙𝑉𝑇 (𝑉 (A)) are the same as the objects of A,
and the hom-set is given by 𝐾𝑙𝑉𝑇 (𝑉 (A)) (𝐴, 𝐵) := 𝑉 (A) (𝐴,𝑉𝑇𝐵) = V(1,A(𝐴,𝑇𝐵)) for any
𝐴, 𝐵 ∈ A. Moreover, V(1,A(𝐴,𝑇𝐵)) = V(1, 𝐾𝑙𝑇 (A) (𝐴, 𝐵)) = 𝑉 (𝐾𝑙𝑇 (A)) (𝐴, 𝐵).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

Proto-Quipper with Dynamic Lifting 11:11

• Note that in condition (f), we are not taking aV-enriched Kleisli category of theV-monad𝑇 ,
but just an ordinary Kleisli category of the ordinary monad 𝑉𝑇 . Thus, the Kleisli category is
notV-enriched. However, we do require it to be enriched in convex spaces, which amounts to
requiring the existence of additional operations on its hom-sets, in the sense of Definition 2.4.

• Since 𝑇 is a commutative strongV-monad, 𝑉𝑇 is a commutative strong (ordinary) monad.
Therefore the Kleisli category𝐾𝑙𝑉𝑇 (𝑉 (A)) is monoidal. For any 𝑓 : 𝐴1 → 𝑉𝑇𝐵1 and 𝑔 : 𝐴2 →
𝑉𝑇𝐵2 in 𝐾𝑙𝑉𝑇 (𝑉 (A)), we define 𝑓 ⊗ 𝑔 ∈ 𝐾𝑙𝑉𝑇 (𝑉 (A)) (𝐴1 ⊗ 𝐴2, 𝐵1 ⊗ 𝐵2) to be the following

𝐴1 ⊗ 𝐴2

𝑓 ⊗𝑔
−−−→ 𝑉𝑇𝐵1 ⊗ 𝑉𝑇𝐵2

𝑠−→ 𝑉𝑇 (𝐵1 ⊗ 𝑉𝑇𝐵2)
𝑇𝑡−−→ 𝑉𝑇𝑉𝑇 (𝐵1 ⊗ 𝐵2)

𝜇
−→ 𝑉𝑇 (𝐵1 ⊗ 𝐵2).

• Condition (g) expresses the requirement that the enriched category A must combine both
categories M and Q, i.e., they are subcategories of 𝑉 (A) and its Kleisli category, respectively.
ThusA has both quantum circuits and quantum operations. The commutative diagram implies
that a circuit in A can be used as a quantum operation.

• Since𝜓 (𝑆) = 𝜙 (𝑆) for any 𝑆 ∈ M,Q, we define Bit = 𝜓 (Bit) = 𝜙 (Bit) ∈ A.
• Condition (h) gives a categorical characterization of dynamic lifting. The map dynlift is not
in the image of 𝜙 or𝜓 , and therefore it is neither a quantum circuit nor a quantum operation.

Definition 2.8. We say a V-enriched category A is a model for Proto-Quipper with dynamic lifting

if it satisfies (a)ś(h).

We have now axiomatized a general categorical model for Proto-Quipper with dynamic lifting.
In [Fu et al. 2022a], we give a construction of a concrete model based on biset-enrichment that
satisfies (a)-(h). In the rest of this paper, we will be focusing on showing this abstract categorical
model A is sound with respect to the type system and the operational semantics.

3 A TYPE SYSTEM FOR DYNAMIC LIFTING

In this section, we present the syntax of Proto-Quipper-Dyn and a type system for dynamic lifting.
Our typing judgments have the form Γ ⊢𝛼 𝑀 : 𝐴, where 𝛼 ::= 0 | 1 is a modality used to keep
track of dynamic lifting. When 𝛼 = 1, the term𝑀 is guaranteed not to perform any dynamic lifting
operations while it is being reduced to a value. Such computations can therefore be carried out at
circuit generation time. When 𝛼 = 0,𝑀 may invoke dynamic lifting so the evaluation of𝑀 needs
to be performed at circuit execution time.

Definition 3.1 (Syntax). The syntax of Proto-Quipper-Dyn is in Figure 1.

The modality 𝛼 appears in the linear function type 𝐴 ⊸𝛼 𝐵 and the linear exponential type
!𝛼𝐴. This is because the values of 𝐴 ⊸𝛼 𝐵 and !𝛼𝐴 are thunks and we use the modality 𝛼 in
the types to keep track of the dynamic lifting within the thunks. Circ(𝑆,𝑈) denotes a type of
circuits with input 𝑆 and output 𝑈 . The values of this type are boxed quantum circuits. They can
be further manipulated by meta-operations such as circuit reversal, circuit iteration, or printing;
these operations are treated as constants in the language, i.e., we do not fix a particular set of
such operations, but assume that they would be defined in a standard library that comes with any
particular instance of Proto-Quipper-Dyn.

The terms of our language are similar to the ones from [Rios and Selinger 2018], with the addition
of a term construct for dynamic lifting dynlift𝑀 , which will be evaluated to a boolean value. The
term 𝑐 ranges over constants such as booleans, natural numbers, and built-in functions. A term of
parameter type can be duplicated or discarded. A value of simple type corresponds to a state. Our
language and semantics can accommodate coproducts (sum types), but we elide the treatment here
for the sake of simplicity.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

11:12 Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger

Modality 𝛼, 𝛽 ::= 0 | 1
Types 𝐴, 𝐵 ::= Unit | Qubit | Bit | Bool | !𝛼𝐴 | 𝐴 ⊸𝛼 𝐵 | Circ(𝑆,𝑈) | 𝐴 ⊗ 𝐵
Parameter Types 𝑃, 𝑅 ::= Unit | Nat | !𝛼𝐴 | Circ(𝑆,𝑈) | 𝑃 ⊗ 𝑅
Simple Types 𝑆,𝑈 ::= Unit | Qubit | Bit | 𝑆 ⊗ 𝑈
Terms 𝑀, 𝑁 ::= 𝑐 | 𝑥 | 𝜆𝑥.𝑀 | 𝑀 𝑁 | Unit | (𝑎, C, 𝑏) | apply(𝑀, 𝑁) | force𝑀

| lift𝑀 | box𝑈 𝑀 | (𝑀, 𝑁) | let (𝑥,𝑦) = 𝑁 in𝑀 | dynlift𝑀
Simple Terms 𝑎, 𝑏 ::= ℓ | Unit | (𝑎, 𝑏)
Contexts Γ ::= · | 𝑥 : 𝐴, Γ | ℓ : Qubit, Γ | ℓ : Bit, Γ
Parameter contexts Φ ::= · | 𝑥 : 𝑃,Φ.

Label Contexts Σ ::= · | ℓ : Qubit, Σ | ℓ : Bit, Σ
Values 𝑉 ::= 𝑥 | ℓ | 𝜆𝑥 .𝑀 | lift𝑀 | (𝑎, C, 𝑏) | (𝑉 ,𝑉 ′) | Unit
Circuits C,D : Σ → Σ

′

Fig. 1. The syntax for Proto-Quipper-Dyn

Φ, 𝑥 : 𝐴 ⊢1 𝑥 : 𝐴
var

ℓ : Qubit|Bit ⊢1 ℓ : Qubit|Bit label

Γ1 ⊢𝛼1 𝑀 : 𝐴 ⊸𝛽 𝐵 Γ2 ⊢𝛼2 𝑁 : 𝐴

Γ1 + Γ2 ⊢𝛼1&𝛼2&𝛽 𝑀𝑁 : 𝐵
app

Γ, 𝑥 : 𝐴 ⊢𝛼 𝑀 : 𝐵

Γ ⊢1 𝜆𝑥.𝑀 : 𝐴 ⊸𝛼 𝐵
lambda

Φ ⊢𝛼 𝑀 : 𝐴

Φ ⊢1 lift𝑀 : !𝛼𝐴
lift

Γ ⊢𝛽 𝑀 : !𝛼𝐴

Γ ⊢𝛼&𝛽 force𝑀 : 𝐴
force

Γ ⊢𝛼 𝑀 : !1 (𝑆 ⊸1 𝑈)
Γ ⊢𝛼 box 𝑆 𝑀 : Circ(𝑆,𝑈) box

Γ1 ⊢𝛼 𝑀 : Circ(𝑆,𝑈) Γ2 ⊢𝛽 𝑁 : 𝑆

Γ1 + Γ2 ⊢𝛼&𝛽 apply(𝑀, 𝑁) : 𝑈 apply

Σ1 ⊢1 𝑎 : 𝑆 Σ2 ⊢1 𝑏 : 𝑈

C : Σ1 → Σ2

Φ ⊢1 (𝑎, C, 𝑏) : Circ(𝑆,𝑈) circ
Γ ⊢𝛼 𝑀 : Bit

Γ ⊢0 dynlift 𝑀 : Bool
dynlift

Γ1 ⊢𝛼1 𝑀 : 𝐴 Γ2 ⊢𝛼2 𝑁 : 𝐵

Γ1 + Γ2 ⊢𝛼1&𝛼2
(𝑀, 𝑁) : 𝐴 ⊗ 𝐵

pair
Γ1, 𝑥 : 𝐴,𝑦 : 𝐵 ⊢𝛼1 𝑀 : 𝐶 Γ2 ⊢𝛼2 𝑁 : 𝐴 ⊗ 𝐵

Γ1 + Γ2 ⊢𝛼1&𝛼2
let (𝑥,𝑦) = 𝑁 in𝑀 : 𝐶

let

Fig. 2. The typing rules for Proto-Quipper-Dyn

We make a distinction between variables and labels. A label ℓ corresponds to a wire in a circuit,
or to an address of a bit or qubit state. Consequently, a label is a value that can only have type
Bit orQubit. Labels can only be renamed, not substituted. Every label context Σ has an obvious
interpretation JΣK in the categoryM as a tensor of the appropriate sequence of the objectsQubit

and Bit. We write D : Σ → Σ
′ to denote a quantum circuit, i.e., a morphism D : JΣK → JΣ′K.

Definition 3.2 (Typing). The typing rules are in Figure 2.

We write 𝛼 & 𝛽 for the boolean conjunction of 𝛼 and 𝛽 so that, e.g., 0 & 1 = 0. If Γ1 = Φ, Γ′1 and
Γ2 = Φ, Γ′2 , we write Γ1 + Γ2 for Φ, Γ

′
1 , Γ

′
2 .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

Proto-Quipper with Dynamic Lifting 11:13

In the var rule, we require a parameter context Φ. In the lift and lambda rules, the modality 𝛼
is moved to the type and the current modality (i.e., modality in the conclusion) is set to 1. This is
because the lift and lambda terms are values, and values do not perform dynamic lifting. In fact, all
values have modality 1.

In elimination rules such as app and force, the modality in the type affects the current modality
of the typing judgment through boolean conjunction. This is related to how the evaluations are
performed for these terms. For example, when evaluating the term𝑀𝑁 , we will first evaluate𝑀 ,
then evaluate 𝑁 and finally perform a beta-reduction. Thus, the evaluation of𝑀𝑁 could perform
dynamic lifting of 𝛼1 = 0, 𝛼2 = 0, or 𝛽 = 0. Consequently, the modality for the typing judgment of
𝑀𝑁 is the boolean conjunction of all these related modalities.
By the dynlift rule, an application of dynamic lifting sets the current modality to 0, signifying

that a dynamic lifting is performed. In the box rule, a term𝑀 can only be boxed into a circuit if it
has type !1 (𝑆 ⊸1 𝑈). This ensures that the value of𝑀 (denoted by 𝑉) does not use dynamic lifting.
Thus, when evaluating the term (box 𝑆 𝑉), a dynamic lifting cannot occur. This prevents a class of
runtime errors in Quipper that are caused by boxing functions that use dynamic lifting.

In the apply rule, depending on the modality 𝛼1 & 𝛼2, the term apply(𝑀, 𝑁) either appends the
quantum circuit𝑀 to 𝑁 , which is done at circuit generation time, or applies the quantum operation
𝑀 to 𝑁 , which is done at circuit execution time. The circ rule defines a well-typed quantum circuit.
In practice, we often assume that a set of well-typed quantum gates is provided as pre-defined
constants of the language, so that the programmer does not need to use the circ rule.
The following lemma shows that a value can only have modality 1 and, in particular, that the

free variables of a parameter must come from a parameter context.

Lemma 3.3. If Γ ⊢𝛼 𝑉 : 𝐵, then 𝛼 = 1. Moreover, if Γ ⊢𝛼 𝑉 : 𝑃 , then 𝛼 = 1 and Γ = Φ.

The following lemma shows that the type system has the usual substitution property.

Lemma 3.4 (Substitution). If Γ1, 𝑥 : 𝐴, Γ′1 ⊢𝛼 𝑀 : 𝐵 and Γ2 ⊢1 𝑉 : 𝐴, then Γ1, Γ
′
1 , Γ2 ⊢𝛼 [𝑉 /𝑥]𝑀 : 𝐵.

3.1 Interpretation of the Typing Rules

The modality is a syntactic device to track the dynamic lifting monad𝑇 . We will interpret Γ ⊢1 𝑀 : 𝐴

as a map JΓK → J𝐴K in A, and Γ ⊢0 𝑀 : 𝐴 as a map JΓK → 𝑇 J𝐴K. The modalities in types such as
𝐴 ⊸𝛼 𝐵 and !𝛼𝐴 also indicate occurrences of the dynamic lifting monad 𝑇 .

Definition 3.5. We interpret types as objects in A.

J𝐴 ⊸1 𝐵K = J𝐴K ⊸ J𝐵K

J𝐴 ⊸0 𝐵K = J𝐴K ⊸ 𝑇 J𝐵K

J𝐴 ⊗ 𝐵K = J𝐴K ⊗ J𝐵K

J!1𝐴K = 𝑝♭J𝐴K

J!0𝐴K = 𝑝♭𝑇 J𝐴K

JCirc(𝑆,𝑈)K = 𝑝A(J𝑆K, J𝑈 K)
JBoolK = 𝑝 (1 + 1)
JBitK = Bit

JQubitK = Qubit

For a parameter type 𝑃 , there exists 𝑋 ∈ V such that J𝑃K = 𝑝𝑋 . For a simple type 𝑆 , there exists
𝑌 ∈ M such that J𝑆K = 𝜓𝑌 . We call objects of the form𝜓𝑌 simple objects. We write 𝛼J𝐴K to mean
𝑇 J𝐴K if 𝛼 = 0, otherwise it is J𝐴K. We interpret a context Γ as a tensor product of all objects in
Γ (denoted by JΓK). The interpretation of parameter context JΦK is a parameter object and the

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

11:14 Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger

interpretation of a label context JΣK is a simple object. Without loss of generality, we assume that
if JΣK = JΣ′K, then Σ = Σ

′ (this condition can always be ensured by making additional isomorphic
copies of objects, if necessary).
The interpretation of typing judgements is defined as follows.

Definition 3.6 (Interpretation). To each valid typing judgement Γ ⊢𝛼 𝑀 : 𝐴, we associate a
map J𝑀K : JΓK → 𝛼J𝐴K in A, called its interpretation. Note that J𝑀K here is an abbreviation for
JΓ ⊢𝛼 𝑀 : 𝐴K.

The interpretation is defined by induction on the derivation of Γ ⊢𝛼 𝑀 : 𝐴. Here we show a few
cases, the rest are in [Fu et al. 2022b, Appendix C].

• Case
Γ ⊢𝛼 𝑀 : Bit

Γ ⊢0 dynlift𝑀 : Bool.

By induction hypothesis, we have J𝑀K : JΓK → 𝛼JBitK. If 𝛼 = 1, we define Jdynlift𝑀K by

JΓK
J𝑀K
−−−→ JBitK

dynlift
−−−−−→ 𝑇 JBoolK.

If 𝛼 = 0, we define Jdynlift𝑀K by

JΓK
J𝑀K
−−−→ 𝑇 JBitK

𝑇 dynlift
−−−−−−→ 𝑇𝑇 JBoolK

𝜇
−→ 𝑇 JBoolK.

• Case
Γ, 𝑥 : 𝐴 ⊢𝛼 𝑀 : 𝐵

Γ ⊢1 𝜆𝑥.𝑀 : 𝐴 ⊸𝛼 𝐵.

By induction hypothesis, we have J𝑀K : JΓK ⊗ J𝐴K → 𝛼J𝐵K. Using monoidal closedness, we
define J𝜆𝑥 .𝑀K := curry(J𝑀K) : JΓK → J𝐴K ⊸ 𝛼J𝐵K.

• Case
Φ, Γ1 ⊢𝛼1

𝑀 : 𝐴 ⊸𝛽 𝐵 Φ, Γ2 ⊢𝛼2
𝑁 : 𝐴

Φ, Γ1, Γ2 ⊢𝛼1&𝛼2&𝛽 𝑀𝑁 : 𝐵.
app

Here we only consider the case where 𝛼1 = 𝛼2 = 𝛽 = 0. The other cases are similar. By
induction hypothesis, we have morphisms J𝑀K : JΦK ⊗ JΓ1K → 𝑇 (J𝐴K ⊸ 𝑇 J𝐵K)) and
J𝑁 K : JΦK ⊗ JΓ2K → 𝑇 J𝐴K. Thus we define J𝑀𝑁 K to be the following.

JΦK ⊗ JΓ1K ⊗ JΓ2K
dup⊗JΓ1K⊗JΓ2K−−−−−−−−−−−→ JΦK ⊗ JΦK ⊗ JΓ1K ⊗ JΓ2K

J𝑀K⊗J𝑁 K
−−−−−−−→ 𝑇 (J𝐴K ⊸ 𝑇 J𝐵K)) ⊗ 𝑇 J𝐴K

𝑡−→ 𝑇 (𝑇 (J𝐴K ⊸ 𝑇 J𝐵K) ⊗ J𝐴K) 𝑇𝑠−−→ 𝑇𝑇 ((J𝐴K ⊸ 𝑇 J𝐵K) ⊗ J𝐴K)
𝜇
−→ 𝑇 ((J𝐴K ⊸ 𝑇 J𝐵K) ⊗ J𝐴K) 𝑇𝜖−−→ 𝑇𝑇 J𝐵K

𝜇
−→ 𝑇 J𝐵K.

• Case
Φ ⊢𝛼 𝑀 : 𝐴

Φ ⊢1 lift𝑀 : !𝛼𝐴.

By induction hypothesis, we have J𝑀K : JΦK = 𝑝𝑋 → 𝛼J𝐴K for some 𝑋 ∈ V . By the V-
adjunction 𝑝 ⊢ ♭, we have 𝛿J𝑀K : 𝑋 → ♭𝛼J𝐴K. So we define Jlift 𝑀K := 𝑝𝛿J𝑀K : 𝑝𝑋 →
𝑝♭𝛼J𝐴K.

• Case
Γ ⊢𝛽 𝑀 : !𝛼𝐴

Γ ⊢𝛼&𝛽 force𝑀 : 𝐴.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

Proto-Quipper with Dynamic Lifting 11:15

We only consider the case where 𝛼 = 𝛽 = 0, the other cases are similar. By induction
hypothesis, we have a map J𝑀K : JΓK → 𝑇𝑝♭𝑇 J𝐴K. Since there is aV-natural transformation
force : 𝑝♭𝑇 J𝐴K → 𝑇 J𝐴K, we define Jforce𝑀K by

JΓK
J𝑀K
−−−→ 𝑇𝑝♭𝑇 J𝐴K

𝑇 force−−−−→ 𝑇𝑇 J𝐴K
𝜇
−→ 𝑇 J𝐴K.

• Case

Γ ⊢𝛼 𝑀 : !1 (𝑆 ⊸1 𝑈)
Γ ⊢𝛼 box 𝑆 𝑀 : Circ(𝑆,𝑈).

Here we only consider the case 𝛼 = 1. By induction hypothesis, we have J𝑀K : JΓK →
𝑝♭(J𝑆K ⊸ J𝑈 K). We define Jbox 𝑆𝑀K by

JΓK
J𝑀K
−−−→ 𝑝♭(J𝑆K ⊸ J𝑈 K) box−−→ 𝑝A(J𝑆K, J𝑈 K).

• Case

Φ, Γ1 ⊢𝛼 𝑀 : Circ(𝑆,𝑈) Φ, Γ2 ⊢𝛽 𝑁 : 𝑆

Φ, Γ1, Γ2 ⊢𝛼&𝛽 apply(𝑀, 𝑁) : 𝑈 apply

Here we only consider the case 𝛼 = 𝛽 = 0. By induction hypothesis, we have J𝑀K : JΓ1K →
𝑇𝑝A(J𝑆K, J𝑈 K) and J𝑁 K : JΓ2K → 𝑇 J𝑆K. Thus we define Japply(𝑀, 𝑁)K by

JΦK ⊗ JΓ1K ⊗ JΓ2K
dup⊗JΓ1K⊗JΓ2K−−−−−−−−−−−→ JΦK ⊗ JΦK ⊗ JΓ1K ⊗ JΓ2K
J𝑀K⊗J𝑁 K
−−−−−−−→ 𝑇𝑝A(J𝑆K, J𝑈 K) ⊗ 𝑇 J𝑆K
𝑡−→ 𝑇 (𝑇𝑝A(J𝑆K, J𝑈 K) ⊗ J𝑆K)
𝑇𝑠−−→ 𝑇𝑇 (𝑝A(J𝑆K, J𝑈 K) ⊗ J𝑆K)
𝜇
−→ 𝑇 (𝑝A(J𝑆K, J𝑈 K) ⊗ J𝑆K)
𝑇 ((force ◦ unbox) ⊗ J𝑆K)
−−−−−−−−−−−−−−−−−−→ 𝑇 ((J𝑆K ⊸ J𝑈 K) ⊗ J𝑆K)
𝑇𝜖−−→ 𝑇 J𝑈 K.

Our interpretation of the typing rules satisfies the usual semantics substitution theorem. The
details of the proof are in [Fu et al. 2022b, Appendix D].

Theorem 3.7 (Substitution). If Φ, Γ1, 𝑥 : 𝐴, Γ2 ⊢𝛼 𝑀 : 𝐵 and Φ, Γ3 ⊢1 𝑉 : 𝐴, then

J[𝑉 /𝑥]𝑀K = J𝑀K ◦ (JΦK ⊗ JΓ1K ⊗ J𝑉 K ⊗ JΓ2K) ◦ (dup ⊗ JΓ1K ⊗ JΓ2K ⊗ JΓ3K) : JΦ, Γ1, Γ2, Γ3K → 𝛼J𝐵K.

The next two theorems show that values of parameter type are in the image of functor 𝑝 , and
that values of simple types are isomorphisms.

Theorem 3.8. If Φ ⊢1 𝑉 : 𝑃 , then J𝑉 K = 𝑝𝑓 : 𝑝𝑋 → 𝑝𝑌 for some 𝑓 : 𝑋 → 𝑌 ∈ V such that

JΦK = 𝑝𝑋, J𝑃K = 𝑝𝑌 .

Theorem 3.9. Suppose Σ ⊢1 𝑉 : 𝑆 , then J𝑉 K : JΣK → J𝑆K is an isomorphism in A.

Since the embedding𝜓 : M ↩→ 𝑉 (A) is fully faithful, J𝑉 K : JΣK → J𝑆K is also an isomorphism in
M.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

11:16 Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger

4 OPERATIONAL SEMANTICS AND SOUNDNESS

In this section, we will specify an operational semantics for Proto-Quipper-Dyn and show that it is
sound with respect to theV-enriched categorical model A for dynamic lifting.

We distinguish two kinds of evaluation in order to model Quipper’s two runtimes. The evaluation
rules for circuit generation time will work with morphisms in M, i.e., quantum circuits. On the
other hand, the evaluation rules for circuit execution time will work with morphisms in Q, i.e.,
quantum operations. Because of the embeddings𝜓 : M ↩→ 𝑉 (A) and 𝜙 : Q ↩→ 𝐾𝑙𝑉𝑇 (𝑉 (A)), we are
able to interpret the configurations for these two runtimes as maps in the V-enriched category A.

4.1 Operational Semantics for Circuit Generation Time

First of all, we specify the meaning of appending circuits in the category M.

Definition 4.1 (Circuit append). Suppose C : Σ → Σ1, Σ2 and D : Σ′
1 → Σ3 are morphisms inM

and there are typing judgments Σ1 ⊢1 𝑉 : 𝑆 and Σ
′
1 ⊢1 𝑉 ′ : 𝑆 . We define append(D, C,𝑉 ′,𝑉) to be

the following morphism in M.

((D ◦ J𝑉 ′K−1 ◦ J𝑉 K) ⊗ JΣ2K) ◦ C : Σ → Σ3, Σ2

Thus append(D, C,𝑉 ′,𝑉) is the result of appending the circuit D to C by connecting the
interfaces 𝑉 ′ and 𝑉 . The following are evaluation rules for circuit generation time, where the
underlying states are given by morphisms in M.

Definition 4.2 (Circuit generation time evaluation).

(C1, 𝑀) ⇓ (C2, 𝜆𝑥 .𝑀′)
(C2, 𝑁) ⇓ (C3,𝑉)

(C3, [𝑉 /𝑥]𝑀′) ⇓ (C4,𝑉 ′)
(C1, 𝑀𝑁) ⇓ (C4,𝑉 ′)

(C1, 𝑀) ⇓ (C2, (𝑎,D, 𝑏))
(C2, 𝑁) ⇓ (C3,𝑉)

append(D, C3, 𝑎,𝑉) = C′

(C1, apply(𝑀, 𝑁)) ⇓ (C′, 𝑏)
apply

(C, 𝑀) ⇓ (C′, lift 𝑀′)
(C′, 𝑀′) ⇓ (C′′,𝑉)

(C, force𝑀) ⇓ (C′′,𝑉)

(C, 𝑀) ⇓ (C′, lift𝑀′)
gen(𝑆) = 𝑎

(Id𝑆 , 𝑀′ 𝑎) ⇓ (D, 𝑏)
(C, box 𝑆 𝑀) ⇓ (C′, (𝑎,D, 𝑏)) box

(C, 𝑁) ⇓ (C′, (𝑉1,𝑉2))
(C′, [𝑉1/𝑥,𝑉2/𝑦]𝑀) ⇓ (C′′,𝑉)

(C, let (𝑥,𝑦) = 𝑁 in𝑀) ⇓ (C′′,𝑉)

(C, 𝑀) ⇓ (C′,𝑉1)
(C′, 𝑁) ⇓ (C′′,𝑉2)

(C, (𝑀, 𝑁)) ⇓ (C′′, (𝑉1,𝑉2))

In the rule box, we use gen(𝑆) = 𝑎 to mean that the 𝑎 is a fresh simple term of type 𝑆 . Note that
the evaluation of (C, 𝑀) ⇓ (C′,𝑉) does not account for dynamic lifting, and the underlying states
are circuits. So it is the same set of evaluation rules as in [Rios and Selinger 2018]. The evaluation
comes with the following notion of configuration.

Definition 4.3 (Well-typed circuit configuration). We write Σ ⊢ (C, 𝑀) : 𝐴; Σ′ to mean there exists
Σ
′′ such that C : Σ → Σ

′, Σ′′ and Σ
′′ ⊢1 𝑀 : 𝐴.

A well-typed circuit configuration requires a typed term with modality 1, i.e., ⊢1 𝑀 : 𝐴. It is a
runtime error if a term with dynamic lifting is encountered when using the evaluation rules in
Definition 4.2. Our type system and the following type preservation theorem ensures that this can
not happen.

Theorem 4.4. If Σ ⊢ (C, 𝑀) : 𝐴; Σ′ and (C, 𝑀) ⇓ (C′,𝑉), then Σ ⊢ (C′,𝑉) : 𝐴; Σ′.

In the following we define the interpretation JC, 𝑀K as a map in the V-category A.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

Proto-Quipper with Dynamic Lifting 11:17

Definition 4.5. Suppose Σ ⊢ (C, 𝑀) : 𝐴; Σ′. We have maps 𝜓C : JΣK → JΣ′K ⊗ JΣ′′K and
J𝑀K : JΣ′′K → J𝐴K in A. We define JC, 𝑀K as follows:

JΣK
𝜓 C
−−→ JΣ′K ⊗ JΣ′′K

JΣ′K⊗J𝑀K
−−−−−−−−→ JΣ′K ⊗ J𝐴K.

The following theorem shows that the evaluation rules for circuit generation time are sound
with respect to the categorical model A. Since in this case dynamic lifting cannot occur, the proof
is similar to the one in [Rios and Selinger 2018].

Theorem 4.6. If Σ ⊢ (C, 𝑀) : 𝐴; Σ′ and (C, 𝑀) ⇓ (C′,𝑉), then JC, 𝑀K = JC′,𝑉 K.

4.2 Operational Semantics for Circuit Execution Time

Since dynamic lifting requires the ability to access the states in Q, we first define the concepts of
state and addresses.

Definition 4.7 (State and addresses). For any object 𝑆 ∈ Q, a state is a morphism𝑄 : 𝐼 → 𝑆 ∈ Q. We
write addr(𝑄) = Σ if 𝜙 (𝑆) = JΣK, we call Σ the addresses of𝑄 . (Recall that we have, for convenience
and without loss of generality, assumed that the interpretation function J−K is one-to-one on label
contexts).

We often write 𝑄 : 𝐼 → Σ ∈ Q for 𝑄 : 𝐼 → 𝑆 , where 𝜙 (𝑆) = JΣK. The following read operation
will be used to define the operational semantics for dynamic lifting.

Definition 4.8 (Read operation). Suppose addr(𝑄) = Σ, ℓ : Bit and𝑄 = 𝑝1 (𝑄1⊗ inj1)+𝑝2 (𝑄2⊗ inj2),
where addr(𝑄1) = addr(𝑄2) = Σ and 𝑝1, 𝑝2 ∈ [0, 1] and 𝑝1 + 𝑝2 = 1. We define a formal sum
read(𝑄, ℓ) = 𝑝1 (𝑄1, False) + 𝑝2 (𝑄2, True), where False, True : Bool.

Note that by the last condition in Assumption 2.5, we know that𝑄 = 𝑝1 (𝑄1⊗ inj1) +𝑝2 (𝑄2⊗ inj2) :
𝐼 → Σ ⊗ Bit for some essentially uniquely determined 𝑄1, 𝑄2 : 𝐼 → Σ, and 𝑝1, 𝑝2 ∈ [0, 1] such that
𝑝1 + 𝑝2 = 1. The only time 𝑄𝑖 is not uniquely determined is when 𝑝𝑖 = 0, but in this case, it will
turn out that the 𝑄𝑖 does not matter since it corresponds to a branch of computation taken with
probability zero. In this case, we can just make some fixed but arbitrary choice for 𝑄𝑖 . So the read
operation makes the information of the probabilities 𝑝1, 𝑝2 and the states 𝑄1, 𝑄2 available.

In the following, we define the circuit execution time counterpart of Definition 4.1. It specifies the
meaning of updating a quantum state by applying a quantum circuit, where the identity-on-object
interpretation functor 𝐽 : M → Q is needed for the definition.

Definition 4.9. Suppose 𝑄 : 𝐼 → Σ1, Σ2 is a morphism in Q, and C : Σ′
1 → Σ3 is a morphism in M,

and there are typing judgements Σ1 ⊢ 𝑉 : 𝑆 and Σ
′
1 ⊢ 𝑉 ′ : 𝑆 . We define operate(C, 𝑄,𝑉 ′,𝑉) to be

the following map in Q.

(𝐽 (C ◦ J𝑉 ′K−1 ◦ J𝑉 K) ⊗ JΣ2K) ◦𝑄 : 𝐼 → Σ3, Σ2

We now we define the operational semantics for circuit execution time. The underlying states
of the evaluation are the states in Q. The evaluation is of the form (𝑄,𝑀) ⇓ ∑

𝑖∈[𝑛] 𝑝𝑖 (𝑄𝑖 ,𝑉𝑖). Its
intuitive meaning is that the configuration (𝑄,𝑀) can be reduced to (𝑄𝑖 ,𝑉𝑖) with probability 𝑝𝑖 .
The notation

∑
𝑖∈[𝑛] 𝑝𝑖 (𝑄𝑖 ,𝑉𝑖) is a short hand for the formal sum 𝑝1 (𝑄1,𝑉1) + ... + 𝑝𝑛 (𝑄𝑛,𝑉𝑛), and

we assume
∑

𝑖∈[𝑛] 𝑝𝑖 = 1. We write [𝑛] = {1, ..., 𝑛}.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

11:18 Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger

Definition 4.10 (Operational semantics for circuit execution time).

(𝑄,𝑀) ⇓ ∑
𝑖∈[𝑛] 𝑝𝑖 (𝑄𝑖 , 𝜆𝑥 .𝑀

′
𝑖)

(𝑄𝑖 , 𝑁) ⇓ ∑
𝑗∈[𝑚] 𝑞𝑖, 𝑗 (𝑄 ′

𝑖, 𝑗 ,𝑉𝑖, 𝑗)
(𝑄 ′

𝑖, 𝑗 , [𝑉𝑖, 𝑗/𝑥]𝑀
′
𝑖) ⇓

∑
𝑘∈[𝑙] 𝑠𝑖, 𝑗,𝑘 (𝑄 ′′

𝑖, 𝑗,𝑘
,𝑉 ′

𝑖, 𝑗,𝑘
)

(𝑄,𝑀𝑁) ⇓ ∑
(𝑖, 𝑗,𝑘) ∈ [𝑛]×[𝑚]×[𝑙] 𝑝𝑖𝑞𝑖, 𝑗𝑠𝑖, 𝑗,𝑘 (𝑄 ′′

𝑖, 𝑗,𝑘
,𝑉 ′

𝑖, 𝑗,𝑘
)

(𝑄,𝑀) ⇓ ∑
𝑖∈[𝑛] 𝑝𝑖 (𝑄𝑖 , lift𝑀

′
𝑖)

(𝑄𝑖 , 𝑀
′
𝑖) ⇓

∑
𝑗∈[𝑚] 𝑞𝑖, 𝑗 (𝑄 ′

𝑖, 𝑗 ,𝑉𝑖, 𝑗)
(𝑄, force𝑀) ⇓ ∑

(𝑖, 𝑗) ∈ [𝑛]×[𝑚] 𝑝𝑖𝑞𝑖, 𝑗 (𝑄 ′
𝑖, 𝑗 ,𝑉𝑖, 𝑗)

(𝑄,𝑀) ⇓ ∑
𝑖∈[𝑛] 𝑝𝑖 (𝑄𝑖 , (𝑎𝑖 ,D𝑖 , 𝑏𝑖))

(𝑄𝑖 , 𝑁) ⇓ ∑
𝑗∈[𝑚] 𝑞𝑖, 𝑗 (𝑄 ′

𝑖, 𝑗 ,𝑉𝑖, 𝑗)
operate(D𝑖 , 𝑄

′
𝑖, 𝑗 , 𝑎𝑖 ,𝑉𝑖, 𝑗) = 𝑄

′′
𝑖, 𝑗

(𝑄, apply(𝑀, 𝑁)) ⇓ ∑
(𝑖, 𝑗) ∈ [𝑛]×[𝑚] 𝑝𝑖𝑞𝑖, 𝑗 (𝑄 ′′

𝑖, 𝑗 , 𝑏𝑖)
apply

(𝑄,𝑀) ⇓ ∑
𝑖∈[𝑛] 𝑝𝑖 (𝑄𝑖 , lift𝑀

′
𝑖)

gen(𝑆) = 𝑎
(Id𝑆 , 𝑀′

𝑖 𝑎) ⇓ (D𝑖 , 𝑏𝑖)
(𝑄, box 𝑆 𝑀) ⇓ ∑

𝑖∈[𝑛] 𝑝𝑖 (𝑄𝑖 , (𝑎,D𝑖 , 𝑏𝑖))
box

(𝑄,𝑀) ⇓ ∑
𝑖∈[𝑛] 𝑝𝑖 (𝑄𝑖 , ℓ𝑖)

read(𝑄𝑖 , ℓ𝑖) = 𝑞𝑖,1 (𝑄 ′
𝑖,1, 𝑎𝑖,1) + 𝑞𝑖,2 (𝑄 ′

𝑖,2, 𝑎𝑖,2)
(𝑄, dynlift𝑀) ⇓ ∑

(𝑖, 𝑗) ∈ [𝑛]×[2] 𝑝𝑖𝑞𝑖, 𝑗 (𝑄 ′
𝑖, 𝑗 , 𝑎𝑖, 𝑗)

dynlift

(𝑄, 𝑁) ⇓ ∑
𝑖∈[𝑛] 𝑝𝑖 (𝑄 ′

𝑖 , (𝑉𝑖 ,𝑉 ′
𝑖)) (𝑄 ′

𝑖 , [𝑉𝑖/𝑥,𝑉 ′
𝑖 /𝑦]𝑀) ⇓ ∑

𝑗∈𝑚 (𝑄 ′′
𝑖, 𝑗 ,𝑉

′′
𝑖, 𝑗)

(𝑄, let (𝑥,𝑦) = 𝑁 in𝑀) ⇓ ∑
(𝑖, 𝑗) ∈ [𝑛]×[𝑚] (𝑄 ′′

𝑖, 𝑗 ,𝑉
′′
𝑖, 𝑗)

(𝑄,𝑀) ⇓ ∑
𝑖∈[𝑛] 𝑝𝑖 (𝑄𝑖 ,𝑉𝑖)

(𝑄𝑖 , 𝑁) ⇓ ∑
𝑗∈[𝑚] 𝑞𝑖, 𝑗 (𝑄 ′

𝑖, 𝑗 ,𝑉
′
𝑖, 𝑗)

(𝑄, (𝑀, 𝑁)) ⇓ ∑
𝑖, 𝑗∈[𝑛]×[𝑚] (𝑄 ′

𝑖, 𝑗 , (𝑉𝑖 ,𝑉 ′
𝑖, 𝑗))

In the apply rule, we use operate instead of append, which allows a quantum circuit to be applied
as a quantum operation. In the dynlift rule, for each (𝑄𝑖 , ℓ𝑖), we apply the operation read(𝑄𝑖 , ℓ𝑖),
which gives rise to two possible outcomes (𝑄 ′

𝑖,1, 𝑎𝑖,1), (𝑄 ′
𝑖,2, 𝑎𝑖,2) with probabilities 𝑞𝑖,1, 𝑞𝑖,2, where

𝑎𝑖,1, 𝑎𝑖,2 : Bool and 𝑎𝑖,1 ≠ 𝑎𝑖,2. This is the only rule that gives rise to probabilistic results in the
evaluation. In the box rule, the evaluation of (Id𝑆 , 𝑀 ′

𝑖 𝑎) uses the rules defined in Definition 4.2, so
it is performed at circuit generation time.
We now define a well-typed configuration for evaluating a term under a quantum state.

Definition 4.11 (Well-typed configuration). We write ⊢𝛼 (𝑄,𝑀) : 𝐴; Σ′ to mean there exists Σ′′

such that Σ′′ ⊢𝛼 𝑀 : 𝐴, and addr(𝑄) = Σ
′′, Σ′.

Since the evaluation rules in Definition 4.10 account for dynamic lifting, the above configuration
allows the term 𝑀 to have modality 0. The operational semantics defined in Definition 4.10 is
type-safe in the following sense.

Theorem 4.12. If ⊢𝛼 (𝑄,𝑀) : 𝐴; Σ′ and (𝑄,𝑀) ⇓ ∑
𝑖∈[𝑛] 𝑝𝑖 (𝑄𝑖 ,𝑉𝑖), then ⊢1 (𝑄𝑖 ,𝑉𝑖) : 𝐴; Σ′ for all

𝑖 ∈ [𝑛].
Theorem 4.13. If ⊢1 (𝑄,𝑀) : 𝐴; Σ′ and (𝑄,𝑀) ⇓ ∑

𝑖∈[𝑛] 𝑝𝑖 (𝑄𝑖 ,𝑉𝑖), then 𝑛 = 1. In other words, we

actually have (𝑄,𝑀) ⇓ (𝑄 ′,𝑉).
In the following we interpret a well-typed configuration ⊢𝛼 (𝑄,𝑀) : 𝐴; Σ′ as a map in the Kleisli

category 𝐾𝑙𝑇 (A).
Definition 4.14. Suppose ⊢𝛼 (𝑄,𝑀) : 𝐴; Σ′. We have 𝜙𝑄 : 𝐼 → 𝑇 (JΣ′

1K ⊗ JΣ′′K ⊗ JΣ′
2K) and

J𝑀K : JΣ′′K → 𝛼J𝐴K in A. We define J𝑄,𝑀K by:

• If 𝛼 = 1, then

𝐼
𝜙𝑄
−−→ 𝑇 (JΣ′

1K ⊗ JΣ′′K ⊗ JΣ′
2K)

𝑇 (JΣ′1K⊗J𝑀K⊗JΣ′2K)−−−−−−−−−−−−−−−→ 𝑇 (JΣ′
1K ⊗ J𝐴K ⊗ JΣ′

2K).

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

Proto-Quipper with Dynamic Lifting 11:19

• If 𝛼 = 0, then

𝐼
𝜙𝑄
−−→ 𝑇 (JΣ′

1K ⊗ JΣ′′K ⊗ JΣ′
2K)

𝑇 (JΣ′1K⊗J𝑀K⊗JΣ′2K)−−−−−−−−−−−−−−−→ 𝑇 (JΣ′
1K ⊗ 𝑇 J𝐴K ⊗ JΣ′

2K)
𝑇 (𝑡⊗JΣ′2K)−−−−−−−−→ 𝑇 (𝑇 (JΣ′

1K ⊗ J𝐴K) ⊗ JΣ′
2K)

𝑇𝑠−−→ 𝑇𝑇 (JΣ′
1K ⊗ J𝐴K ⊗ JΣ′

2K)
𝜇
−→ 𝑇 (JΣ′

1K ⊗ J𝐴K ⊗ JΣ′
2K).

The following theorem shows that the operational semantics in Definition 4.10 is sound with
respect to the semantic model A.

Theorem 4.15 (Soundness). If ⊢𝛼 (𝑄,𝑀) : 𝐴; Σ′, and (𝑄,𝑀) ⇓ ∑
𝑖∈[𝑛] 𝑝𝑖 (𝑄𝑖 ,𝑉𝑖), then

J𝑄,𝑀K =
∑︁

𝑖∈[𝑛]
𝑝𝑖J𝑄𝑖 ,𝑉𝑖K : 𝐼 → 𝑇 (J𝐴K ⊗ JΣ′K).

Proof sketch. The proof is by induction on the evaluation rules. Here we focus on the case for
dynamic lifting. Please see [Fu et al. 2022b, Appendix E] for the proofs of the other cases.
Suppose addr(𝑄) = Σ

′′, Σ′, and Σ
′′ ⊢0 𝑀 : 𝐴, and

Σ
′′ ⊢1 𝑀 : Bit

Σ
′′ ⊢0 dynlift𝑀 : Bool.

Consider the following.

(𝑄,𝑀) ⇓ (𝑄 ′, ℓ)
read(𝑄 ′, ℓ) = 𝑞1 (𝑄 ′

1, False) + 𝑞2 (𝑄 ′
2, True)

(𝑄, dynlift𝑀) ⇓ 𝑞1 (𝑄 ′
1, False) + 𝑞2 (𝑄 ′

2, True)
Since read(𝑄 ′, ℓ) = 𝑞1 (𝑄 ′

1, False) + 𝑞2 (𝑄 ′
2, True) implies that 𝑄 ′

= 𝑞1 (𝑄 ′
1 ⊗ inj1) + 𝑞2 (𝑄 ′

2 ⊗ inj2)
in Q, we have the following in A.

𝜙𝑄 ′
= 𝑞1 (𝜇 ◦𝑇𝑡 ◦ 𝑠 ◦ (𝜙𝑄 ′

1 ⊗ 𝜙 (inj1))) + 𝑞2 (𝜇 ◦𝑇𝑡 ◦ 𝑠 ◦ (𝜙𝑄 ′
2 ⊗ 𝜙 (inj2))),

where 𝜙𝑄 ′ : 𝐼 → 𝑇 (Bit ⊗ JΣ′K), and 𝜙𝑄 ′
1, 𝜙𝑄

′
2 : 𝐼 → 𝑇 JΣ′K, and 𝜙 (inj1), 𝜙 (inj2) : 𝐼 → 𝑇Bit. Note

that by condition (g), we have 𝜙 (inj1) = 𝜂 ◦ init ◦ JFalseK and 𝜙 (inj2) = 𝜂 ◦ init ◦ JTrueK. We need
to show that

J𝑄, dynlift𝑀K = 𝑞1 (𝑇 (JFalseK ⊗ JΣ′K) ◦ 𝜙𝑄 ′
1) + 𝑞2 (𝑇 (JTrueK ⊗ JΣ′K) ◦ 𝜙𝑄 ′

2).
By induction hypothesis, we have J𝑄,𝑀K = J𝑄 ′, ℓK, i.e., 𝑇 (J𝑀K ⊗ JΣ′K) ◦ 𝜙𝑄 = 𝜙𝑄 ′. Thus

J𝑄, dynlift𝑀K = 𝜇 ◦𝑇𝑠 ◦𝑇 ((dynlift ◦J𝑀K) ⊗ JΣ′K) ◦ 𝜙𝑄

= 𝜇 ◦𝑇𝑠 ◦𝑇 (dynlift ⊗JΣ′K) ◦𝑇 (J𝑀K ⊗ JΣ′K) ◦ 𝜙𝑄
= 𝜇 ◦𝑇𝑠 ◦𝑇 (dynlift ⊗JΣ′K) ◦ 𝜙𝑄 ′

= 𝜇 ◦𝑇𝑠 ◦𝑇 (dynlift ⊗JΣ′K)
◦(𝑞1 (𝜇 ◦𝑇𝑡 ◦ 𝑠 ◦ (𝜙𝑄 ′

1 ⊗ 𝜙 (inj1))) + 𝑞2 (𝜇 ◦𝑇𝑡 ◦ 𝑠 ◦ (𝜙𝑄 ′
2 ⊗ 𝜙 (inj2))))

= 𝑞1 (𝜇 ◦𝑇𝑠 ◦𝑇 (dynlift ⊗JΣ′K) ◦ 𝜇 ◦𝑇𝑡 ◦ 𝑠 ◦ (𝜙𝑄 ′
1 ⊗ 𝜙 (inj1)))

+𝑞2 (𝜇 ◦𝑇𝜎 ◦𝑇 (dynlift ⊗JΣ′K) ◦ 𝜇 ◦𝑇𝑡 ◦ 𝜎 ◦ (𝜙𝑄 ′
2 ⊗ 𝜙 (inj2))) .

We just need to show

𝑇 (JFalseK ⊗ JΣ′K) ◦ 𝜙𝑄 ′
1 = 𝜇 ◦𝑇𝑠 ◦𝑇 (dynlift ⊗JΣ′K) ◦ 𝜇 ◦𝑇𝑡 ◦ 𝑠 ◦ (𝜙𝑄 ′

1 ⊗ 𝜙 (inj1))

= 𝜇 ◦𝑇𝑠 ◦𝑇 (dynlift ⊗JΣ′K) ◦ 𝜇 ◦𝑇𝑡 ◦ 𝑠 ◦ (𝜙𝑄 ′
1 ⊗ (𝜂 ◦ init ◦ JFalseK))

This is true because of the commutative diagram in Figure 3. □

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

11:20 Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger

𝐼

𝑇 JΣ′K

𝐼 ⊗ 𝑇 JΣ′K 𝑇 (𝐼 ⊗ JΣ′K)

Bool ⊗ 𝑇 JΣ′K 𝑇 (Bool ⊗ JΣ′K) 𝑇 (Bool ⊗ JΣ′K)

Bit ⊗ 𝑇 JΣ′K 𝑇 (Bit ⊗ JΣ′K) 𝑇 (𝑇Bool ⊗ JΣ′K) 𝑇𝑇 (Bool ⊗ JΣ′K)

𝑇Bit ⊗ 𝑇 JΣ′K

𝑇 (𝑇Bit ⊗ JΣ′K)

𝑇𝑇 (Bit ⊗ JΣ′K) 𝑇 (Bit ⊗ JΣ′K)

𝜙𝑄 ′
1

𝜆−1
𝑇𝜆−1

𝑡

JFalseK⊗𝑇 JΣ′K 𝑇 (JFalseK⊗JΣ′K)

𝑡

init⊗𝑇 JΣ′K

Id

𝑇 (init⊗JΣ′K)
𝑇 (𝜂⊗JΣ′K)

𝜂

𝑡

𝜂⊗𝑇 JΣ′K 𝑇 (𝜂⊗JΣ′K)

𝜂

𝑇 (dynlift ⊗JΣ′K)

𝑇𝑠

𝜇

𝑡

𝑇𝑠

𝜇

Id

Fig. 3. A commutative diagram from the proof of Theorem 4.15

Remark. In practice, a closed term𝑀 is always evaluated with the initial configuration (Id𝐼 , 𝑀),
where Id𝐼 : 𝐼 → 𝐼 is a state in Q. When 𝑀 has modality 0, we would need access to a quantum
computer/simulator in order to evaluate (Id𝐼 , 𝑀) and each run of (Id𝐼 , 𝑀) could give a different value.
When𝑀 has modality 1, the evaluation of (Id𝐼 , 𝑀) is deterministic, i.e., the top-level quantum state
is updated in a deterministic fashion. In this case, instead of performing the quantum operations,
we could also just generate a list of gates, which can be done entirely in a classical computer.

5 DYNAMIC LIFTING IN PROTO-QUIPPER

While typing judgments and certain types (𝐴 ⊸𝛼 𝐵 and !𝛼𝐴) are annotated with a modality,
information about this modality is meant to be hidden from the programmer unless an error
occurs. For example, if one attempt to box a function which uses dynamic lifting, the type checker
will raise a modality error. As a result, such programming errors are caught at compile time in
Proto-Quipper-Dyn, whereas they are only caught at runtime in Quipper.

The modality inference can readily be integrated into bi-directional type checking, which uses a
pair of recursively defined functions for type checking and type inference [Pierce and Turner 2000].
To work with modalities, the type checking function not only takes a term and a type as inputs,
but also the current modality of the typing judgment. For example, when checking a term 𝜆𝑥.𝑀

against a type 𝐴 ⊸𝛼 𝐵 with current modality 𝛽 , the type checking function first ensures that the
current modality 𝛽 is 1, then extends the current typing environment with 𝑥 : 𝐴 and recursively
checks the term 𝑀 against the type 𝐵, with the modality 𝛼 . The type inference function takes a
term as input and outputs the inferred type as well as the inferred modality. For example, when
inferring the type for a term 𝑀𝑁 , the type inference function first infers a type 𝐴 ⊸𝛼 𝐵 and a

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

Proto-Quipper with Dynamic Lifting 11:21

modality 𝛽 for𝑀 , and then it infers a type 𝐴 and a modality 𝛾 for the term 𝑁 , so the type inference
function will return the type 𝐵 and the inferred modality 𝛼 & 𝛽 & 𝛾 .
We now discuss several Proto-Quipper-Dyn programs that make use of dynamic lifting. An

experimental implementation of Proto-Quipper-Dyn is available from https://gitlab.com/frank-
peng-fu/dpq-remake, and the programs in Listings 1ś6 have been tested with that implementation.
Note that several of the following example programs make use of recursion. While we do not
formally treat recursion in this paper, it is included in the prototype implementation.

5.1 Quantum Teleportation

The following circuit implements a one-qubit quantum teleportation protocol.

0

0

H

H

Meas

Meas

X Z

This circuit is generated by the following Proto-Quipper-Dyn programs.

alice1 : !(Qubit -> Qubit -> Bit *

Bit)

alice1 a q =

let (a, q) = CNot a q

q = H q

in (Meas a, Meas q)

bob1 : !(Qubit -> Bit -> Bit -> Qubit

)

bob1 q x y =

let (q, x) = C_X q x

(q, y) = C_Z q y

_ = Discard x

_ = Discard y

in q

Listing 1. Alice and Bob circuits

bell00 : !(Unit -> Qubit * Qubit)

bell00 u =

let a = Init0 ()

b = Init0 ()

in CNot b (H a)

tele1 : !(Qubit -> Qubit)

tele1 q =

let (b, a) = bell00 ()

(x, y) = alice1 a q

z = bob1 b x y

in z

boxTele : Circ(Qubit , Qubit)

boxTele = box Qubit tele1

Listing 2. Teleportation circuit

As can be seen in Listings 1 and 2, the modality information is not visible to the programmer.
Because the programs in Listings 1 and 2 do not use dynamic lifting, the modalities in the fully
annotated types are all 1. For example, the fully annotated type of tele1 is !1 (Qubit ⊸1 Qubit).
We can therefore box tele1 into a quantum circuit. The evaluation of boxTele occurs on a classical
computer and generates the circuit diagram above.
For comparison, let us consider the following Proto-Quipper-Dyn programs that implement

quantum teleportation using dynamic lifting.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

https://gitlab.com/frank-peng-fu/dpq-remake
https://gitlab.com/frank-peng-fu/dpq-remake

11:22 Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger

alice2 : !(Qubit -> Qubit -> Bool *

Bool)

alice2 a q =

let (a, q) = CNot a q

q = H q

in (dynlift (Meas a), dynlift (Meas

q))

bob2 : !(Qubit -> Bool -> Bool ->

Qubit)

bob2 q x y =

let q = if x then QNot q else q

q = if y then ZGate q else q

in q

Listing 3. Alice and Bob functions

tele2 : !(Qubit -> Qubit)

tele2 q =

let (b, a) = bell00 ()

(x, y) = alice2 a q

z = bob2 b x y

in z

-- The following will raise an error

boxAttempt : Circ(Qubit , Qubit)

boxAttempt = box Qubit tele2

test : Bool

test =

dynlift (Meas (tele2 (Init0 ())))

Listing 4. Teleportation function

As before, the code in Listings 3 and 4 contains no modality annotations. In the alice2 function,
dynamic lifting is used right after the measurement gate Meas : Qubit → Bit. Accordingly, the
fully annotated type of alice2 is !1 (Qubit ⊸1 Qubit ⊸0 Bool ∗ Bool). The bob2 function then
uses if-then-else expressions to decide whether to apply the gates QNot and ZGate, rather than
applying the bit-controlled gates C_X and C_Z, as in the bob1 function in Listing 1.
The tele2 function calls the bob2 function with the booleans provided by the alice2 function.

Hence, the tele2 function implicitly uses dynamic lifting. Its fully annotated type is !1 (Qubit ⊸0

Qubit). Because of the modality inference, the type checker will issue a typing error for the
boxAttempt function. According to the typing rule for box, the box Qubit function requires an
argument of type !1 (Qubit ⊸1 Qubit), which is distinct from the type of tele2. This error is sensible
because the tele2 function does not correspond to a circuit.

The test function applies tele2 to an input qubit in the |0⟩ state. The output value of test should
then be False with probability 1. Note that the evaluation of test requires access to a quantum
computer or a simulator.

5.2 Magic State Distillation

Magic states are quantum states that can be used, in conjunction with Clifford gates, to perform
universal quantum computing fault tolerantly [Bravyi and Kitaev 2005]. For example, there is a

standard method to implement a𝑇 gate using the magic state (|0⟩ + 𝑒 𝜋𝑖
4 |1⟩)/

√
2, along with Clifford

gates and measurements. This enables the application of any operation from the Clifford+𝑇 gate
set, a well-known universal set of quantum gates [Nielsen and Chuang 2002].

The process of producing a magic state such as (|0⟩ + 𝑒 𝜋𝑖
4 |1⟩)/

√
2 from several imperfect states

is called magic state distillation [Bravyi and Kitaev 2005]. In order to distill a magic state |𝑀⟩, one
first prepares several qubits in a state that approximates |𝑀⟩ up to an error rate 𝜖 . A carefully
designed quantum circuit is then applied to these qubits and some of them are measured. If all
of the measurement results are 0, then the remaining qubits are guaranteed to be in a state that
approximates |𝑀⟩ up to an improved error rate 𝜖′ < 𝜖 . If any one of the measurement results is 1,
then all of the qubits are discarded and the entire process is restarted. In practice, several rounds of
distillation are required to obtain a state that approximates |𝑀⟩ up to an acceptable error rate.
A Proto-Quipper-Dyn implementation of Bravyi and Kitaev’s distillation algorithm is given in

Listing 5. In the distill function, we first apply a five-qubit error correction circuit fiveQubits to
the inputs, then measure the qubits and, through dynamic lifting, promote the resulting bits to

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

Proto-Quipper with Dynamic Lifting 11:23

distill : ! (Qubit * Qubit * Qubit * Qubit * Qubit -> Maybe Qubit)

distill input =

let (a1, a2, a3, a4, a5) = fiveQubits input

a1' = dynlift (Meas a1)

a2' = dynlift (Meas a2)

a3' = dynlift (Meas a3)

a4' = dynlift (Meas a4)

in if a1' || a2 ' || a3 ' || a4 '

then let a = dynlift (Meas a5) in Nothing

else Just a5

distillation : ! (Nat -> Qubit)

distillation n =

case n of

Z -> prepMixedState ()

S n' ->

let q1 = distillation n'

q2 = distillation n'

q3 = distillation n'

q4 = distillation n'

q5 = distillation n'

in

case distill (q1, q2, q3, q4, q5) of

Nothing -> distillation n

Just q -> q

Listing 5. Bravyi and Kitaev’s algorithm

booleans. If all of the booleans are False, the distillation was successful and we return the remaining
qubit. Otherwise the distillation failed, so we discard the unmeasured qubit and return nothing.
Dynamic lifting is essential for defining the distill function because in this case the if-then-else
expression cannot be implemented as a circuit.

The distillation function performs 𝑛 rounds of magic state distillation. The function prepMixed-

State prepares an initial imperfect state. The distillation function is a recursive function that
assumes five successful distillations from the previous round and then applies the distill function
to the resulting qubits. If that function returns a qubit, the 𝑛-th round of distillation was successful,
otherwise it will restart the whole process.

5.3 Repeat-Until-Success

The repeat-until-success paradigm provides a technique to apply a unitary that cannot be imple-
mented exactly, at the cost of potentially running the same circuit multiple times. In order to
apply a non-Clifford+T gate 𝑁 to a target qubit |𝜙⟩, one first initializes several ancillary qubits
before applying a well-chosen Clifford+T circuit 𝐶 to the target and the ancillas and measuring the
ancillas. If all of the measurement results are 0, the target qubit is guaranteed to be in the state
𝑁 |𝜙⟩. Otherwise, a correction is applied to the target to return it to its initial state and the process
is repeated.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

11:24 Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger

Consider the following circuit used in [Paetznick and Svore 2014] to illustrate the implementation
of the gate 𝑉3 =

𝐼+2𝑖𝑍√
5

using the repeat-until-success method.

0 H T*

0 H

T H Meas

T Z

T H Meas

The top wire is the target qubit, while the wires below it are the ancillas. We apply a sequence of
gates (𝐻 , 𝐻 ,𝑇 ∗,𝐶𝑁𝑂𝑇 ,𝑇 , and 𝐻) to the ancillas before measuring the first ancilla. If, as we assume
here, the measurement result is 0, then we apply a sequence of gates (𝑇 , 𝑍 , 𝐶𝑁𝑂𝑇 , 𝑇 , and 𝐻) to
the target qubit and the second ancilla before measuring the second ancilla. Assuming, again, that
the measurement result is 0, we then know that the target qubit is in the desired state. Note that
the circuit above is not a representation of the entire repeat-until-success protocol. Instead, it is
the circuit constructed in the event that both measurement results are 0 (which can be shown to
occur with probability 5/8). If the measurements yield different results, the circuit constructed by
the repeat-until-success protocol is different. For example, if the result of the second measurement
is 1, a 𝑍 gate must be applied to the target qubit to return it to its initial state.
Listing 6 gives a precise description of the implementation of 𝑉3 in Proto-Quipper-Dyn.

v3 : !(Qubit -> Qubit)

v3 q =

let a1 = tgate_inv (H (Init0 ()))

a2 = H (Init0 ())

(a1, a2) = CNot a1 a2

a1 = H (TGate a1)

in if dynlift (Meas a1)

then

let _ = Discard (Meas a2)

in v3 q

else let q = ZGate (TGate q)

(a2, q) = CNot a2 q

a2 = H (TGate a2)

in if dynlift (Meas a2)

then v3 (ZGate q)

else q

Listing 6. A repeat-until-success example

Once again, dynamic lifting plays an essential role here. Note that the v3 function has type
!1 (Qubit ⊸0 Qubit); it is a quantum computation, rather than a quantum circuit.

6 CONCLUSION

We have given an axiomatization of an enriched categorical semantics for Proto-Quipper with
dynamic lifting. We defined a type system with a modality to keep track of functions that use
dynamic lifting. The main benefit of our type system is that it statically ensures that the boxing
operation can only be applied to a function that does not use dynamic lifting. We also gave an
operational semantics for dynamic lifting. The operational semantics models both circuit generation
and circuit execution. We also defined an abstract categorical semantics for this language and
proved that the type system and the operational semantics are sound with respect to it. Lastly, we
gave some examples of quantum algorithms that rely on dynamic lifting.
There are many things left to be done. One of them is how to combine dynamic lifting with

dependent types and/or recursion. At this point, we have amodel for dynamic lifting [Fu et al. 2022a],

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

Proto-Quipper with Dynamic Lifting 11:25

but it does not support dependent types or recursion. We also have a model for Proto-Quipper
with dependent types [Fu et al. 2020a], but it does not support dynamic lifting or recursion. Finally,
Lindenhovius et al. have a model for Proto-Quipper with recursion [Lindenhovius et al. 2018], but
it does not support dynamic lifting or dependent types. We do not think that adding recursion to
Proto-Quipper-Dyn would create fundamental difficulties at the level of the syntax, type system, or
operational semantics (although languages with recursion are usually better handled by small-step
operational semantics rather than the big-step semantics we considered here). On the other hand,
finding a concrete denotational semantics gets more complicated the more features are included
in the programming language, and how to add dependent types or recursion to a semantics of
Proto-Quipper-Dyn is an open problem.

ACKNOWLEDGEMENTS

We thank the referees for their thoughtful comments. This work was supported by the Natural
Sciences and Engineering Research Council of Canada (NSERC) and by the Air Force Office of
Scientific Research under Award No. FA9550-21-1-0041.

REFERENCES

Nick Benton. 1995. A mixed linear and non-linear logic: Proofs, terms and models (extended abstract). In Proceedings of

the 8th Workshop on Computer Science Logic, CSL’94, Selected Papers (Springer Lecture Notes in Computer Science 933).

121ś135.

Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin Vechev. 2020. Silq: A High-Level Quantum Language with

Safe Uncomputation and Intuitive Semantics. In Proceedings of the 41st ACM SIGPLAN Conference on Programming

Language Design and Implementation (London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY,

USA, 286ś300. https://doi.org/10.1145/3385412.3386007

Francis Borceux. 1994. Handbook of Categorical Algebra, Volume 2: Categories and Structures. Cambridge University Press.

Sergey Bravyi and Alexei Kitaev. 2005. Universal quantum computation with ideal Clifford gates and noisy ancillas. Physical

Review A 71, 2 (2005), 022316.

Andrea Colledan and Ugo Dal Lago. 2022. On dynamic lifting and effect typing in circuit description languages (extended

version). (2022). Available from arXiv:2202.07636.

Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger. 2020b. A tutorial introduction to quantum circuit programming

in dependently typed Proto-Quipper. In Proceedings of the 12th International Conference on Reversible Computation, RC

2020, Oslo, Norway (Lecture Notes in Computer Science, Vol. 12227). Springer, 153ś168. https://doi.org/10.1007/978-3-030-

52482-1_9 Also available from arXiv:2005.08396.

Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger. 2022a. A biset-enriched categorical model for Proto-Quipper with

dynamic lifting. (April 2022). To appear in QPL 2022. Available from arXiv:2204.13039.

Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger. 2022b. Proto-Quipper with dynamic lifting. (2022). Available from

arXiv:2204.13041.

Peng Fu, Kohei Kishida, and Peter Selinger. 2020a. Linear dependent type theory for quantum programming languages. In

Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2020, Saarbrücken, Germany.

440ś453. https://doi.org/10.1145/3373718.3394765 Also available from arXiv:2004.13472.

Alexander Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron. 2013a. An introduction to

quantum programming in Quipper. In Proceedings of the 5th International Conference on Reversible Computation, RC 2013,

Victoria, British Columbia (Lecture Notes in Computer Science, Vol. 7948). Springer, 110ś124. https://doi.org/10.1007/978-3-

642-38986-3_10 Also available from arXiv:1304.5485.

Alexander Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron. 2013b. Quipper: a scalable quantum

programming language. In Proceedings of the 34th Annual ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2013, Seattle (ACM SIGPLAN Notices, Vol. 48(6)). 333ś342. https://doi.org/10.1145/2499370.2462177

Also available from arXiv:1304.3390.

G. M. Kelly. 1982. Basic concepts of enriched category theory. Lecture Notes of the London Mathematical Society, Vol. 64.

Cambridge University Press.

Dongho Lee, Valentin Perrelle, Benoît Valiron, and Zhaowei Xu. 2021. Concrete categorical model of a quantum circuit

description language with measurement. In 41st IARCS Annual Conference on Foundations of Software Technology and

Theoretical Computer Science, FSTTCS 2021 (LIPIcs, Vol. 213), Mikolaj Bojanczyk and Chandra Chekuri (Eds.). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 51:1ś51:20. https://doi.org/10.4230/LIPIcs.FSTTCS.2021.51

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

https://doi.org/10.1145/3385412.3386007
http://arxiv.org/abs/2202.07636
https://doi.org/10.1007/978-3-030-52482-1_9
https://doi.org/10.1007/978-3-030-52482-1_9
http://arxiv.org/abs/2005.08396
http://arxiv.org/abs/2204.13039
http://arxiv.org/abs/2204.13041
https://doi.org/10.1145/3373718.3394765
http://arxiv.org/abs/2004.13472
https://doi.org/10.1007/978-3-642-38986-3_10
https://doi.org/10.1007/978-3-642-38986-3_10
http://arxiv.org/abs/1304.5485
https://doi.org/10.1145/2499370.2462177
http://arxiv.org/abs/1304.3390
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.51

11:26 Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger

Bert Lindenhovius, Michael Mislove, and Vladimir Zamdzhiev. 2018. Enriching a linear/non-linear lambda calculus: A

programming language for string diagrams. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer

Science (Oxford, United Kingdom) (LICS ’18). Association for Computing Machinery, New York, NY, USA, 659ś668.

https://doi.org/10.1145/3209108.3209196

MetaOCaml 2020. MetaOCaml ś an OCaml dialect for multi-stage programming. https://okmij.org/ftp/ML/MetaOCaml.html.

Accessed: 2022-10-05.

Eugenio Moggi. 1991. Notions of computation and monads. Information and Computation 93, 1 (1991), 55ś92.

Michael A. Nielsen and Isaac L. Chuang. 2002. Quantum Computation and Quantum Information. Cambridge University

Press.

Bernhard Ömer. 1998. A Procedural Formalism for Quantum Computing. Master’s thesis. Department of Theoretical Physics,

Technical University of Vienna. http://tph.tuwien.ac.at/~oemer/qcl.html

Adam Paetznick and Krysta M. Svore. 2014. Repeat-until-success: Non-deterministic decomposition of single-qubit unitaries.

Quantum Information and Computation 14, 15ś16 (2014), 1277ś1301. https://doi.org/10.26421/QIC14.15-16-2 Also

available from arXiv:1311.1074.

Jennifer Paykin, Robert Rand, and Steve Zdancewic. 2017. QWIRE: a core language for quantum circuits. In Proceedings

of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (ACM SIGPLAN Notices, Vol. 52). ACM,

846ś858.

Benjamin C. Pierce and David N. Turner. 2000. Local type inference. ACM Transactions on Programming Languages and

Systems (TOPLAS) 22, 1 (2000), 1ś44.

Mathys Rennela and Sam Staton. 2020. Classical control, quantum circuits and linear logic in enriched category theory.

Logical Methods in Computer Science 16, 1 (2020), 30:1ś24. https://doi.org/10.23638/LMCS-16(1:30)2020

Francisco Rios and Peter Selinger. 2018. A categorical model for a quantum circuit description language. Extended

Abstract. In Proceedings of the 14th International Conference on Quantum Physics and Logic, QPL 2017, Nijmegen (Electronic

Proceedings in Theoretical Computer Science, Vol. 266). 164ś178. https://doi.org/10.4204/EPTCS.266.11 Also available

from arXiv:1706.02630.

Neil J. Ross. 2015. Algebraic and logical methods in quantum computation. Ph. D. Dissertation. Dalhousie University,

Department of Mathematics and Statistics. Available from arXiv:1510.02198.

Peter Selinger. 2004. Towards a quantum programming language. Mathematical Structures in Computer Science 14, 4 (2004),

527ś586.

Peter Selinger and Benoît Valiron. 2009. Quantum lambda calculus. In Semantic Techniques in Quantum Computation, Simon

Gay and Ian Mackie (Eds.). Cambridge University Press, Chapter 4, 135ś172.

Walid Taha and Tim Sheard. 2000. MetaML and multi-stage programming with explicit annotations. Theoretical Computer

Science 248, 1 (2000), 211ś242. https://doi.org/10.1016/S0304-3975(00)00053-0 PEPM’97.

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 11. Publication date: January 2023.

https://doi.org/10.1145/3209108.3209196
https://okmij.org/ftp/ML/MetaOCaml.html
http://tph.tuwien.ac.at/~oemer/qcl.html
https://doi.org/10.26421/QIC14.15-16-2
http://arxiv.org/abs/1311.1074
https://doi.org/10.23638/LMCS-16(1:30)2020
https://doi.org/10.4204/EPTCS.266.11
http://arxiv.org/abs/1706.02630
http://arxiv.org/abs/1510.02198
https://doi.org/10.1016/S0304-3975(00)00053-0

	Abstract
	1 Introduction
	1.1 Quipper and Proto-Quipper
	1.2 Dynamic Lifting and the Interaction of the Two Runtimes
	1.3 A Type System for Dynamic Lifting
	1.4 Operational Semantics
	1.5 Related Work
	1.6 Contributions

	2 An enriched categorical semantics for dynamic lifting
	2.1 An Axiomatization of Enriched Categorical Models of Dynamic Lifting

	3 A type system for dynamic lifting
	3.1 Interpretation of the Typing Rules

	4 Operational semantics and soundness
	4.1 Operational Semantics for Circuit Generation Time
	4.2 Operational Semantics for Circuit Execution Time

	5 Dynamic lifting in Proto-Quipper
	5.1 Quantum Teleportation
	5.2 Magic State Distillation
	5.3 Repeat-Until-Success

	6 Conclusion
	References

