A biset-enriched categorical model for Proto-Quipper with dynamic lifting

Frank Fu

Joint work with K. Kishida, N.J. Ross and P. Selinger

FMCS 2022

Motivation

Categorical semantics for Quipper and Proto-Quipper.

- Circuit generation time and circuit execution time.
- Dynamic lifting.

Quipper/Proto-Quipper's two runtimes

Dynamic lifting

- *Parameters*: circuit generation time values (e.g., **Bool**, **Nat**)
- *States*: circuit execution time values (e.g., **Bit**, **Qubit**).
- Measurement: Qubit \rightarrow Bit.
- Dynamic lifting: an operation that lifts a **Bit** to a **Bool**.

Categories for the two runtimes

 $\begin{matrix} \mathbf{M} \\ \downarrow_J \\ \mathbf{Q} \end{matrix}$

- M represents the category of quantum circuits.
- **Q** represents the category of quantum operations.
- The *interpretation* functor *J*.

Modeling dynamic lifting

T is a strong commutative monad.

How to combine **M** and **Q**?

 $\mathbf{M} \\ \downarrow^J \\ \mathbf{Q} \\$

Our answer: biset-enrichment

 ■ The category of *bisets*, i.e., Set^{2^{op}}.
■ Objects: (X₀, X₁, f).
X₁ ↓ f X₀

• Morphisms: (h_0, h_1) .

$$\begin{array}{ccc} X_1 & \stackrel{h_1}{\longrightarrow} & Y_1 \\ \downarrow^f & & \downarrow^g \\ X_0 & \stackrel{h_0}{\longrightarrow} & Y_0 \end{array}$$

The category of bisets: **Set**^{2°P}

- It is cartesian closed, complete and cocomplete.
- $\blacksquare U_0(X_0, X_1, f) = X_0 : \mathbf{Set}^{2^{\mathrm{op}}} \to \mathbf{Set}.$
- $\blacksquare \ \Delta(X) = (X, X, \mathrm{Id}) : \mathbf{Set} \to \mathbf{Set}^{\mathbf{2^{op}}}.$
- $\blacksquare \ U_0 \dashv \Delta$
- A strong commutative monad $T = \Delta \circ U_0$.

•
$$obj(\mathbf{C}) = obj(\mathbf{Q}) = obj(\mathbf{M}).$$

For any $A, B \in \mathbb{C}$, the hom-object $\mathbb{C}(A, B)$ is a biset:

 $\mathbf{M}(A, B)$ $\downarrow^{J_{AB}}$ $\mathbf{Q}(A, B)$

A global map $f : 1 \rightarrow \mathbf{C}(A, B)$ is the following.

The biset-enriched category $\overline{\mathbf{C}}$

Define
$$\overline{\mathbf{C}} := \mathcal{V}^{\mathbf{C}^{\mathrm{op}}}$$
, where $\mathcal{V} = \mathbf{Set}^{2^{\mathrm{op}}}$

• $\overline{\mathbf{C}}$ is monoidal closed.

Bit =
$$y$$
Bit = $C(-, Bit)$.

■ **Bool** =
$$yI + yI = C(-, I) + C(-, I)$$
.

• A strong commutive \mathcal{V} -monad $\overline{T}(F) = T \circ F$.

 $\overline{\mathbf{C}} := \mathcal{V}^{\mathbf{C}^{\mathrm{op}}}$, where $\mathcal{V} = \mathbf{Set}^{\mathbf{2}^{\mathrm{op}}}$.

 $\overline{\mathbf{C}} := \mathcal{V}^{\mathbf{C}^{\mathrm{op}}}$, where $\mathcal{V} = \mathbf{Set}^{\mathbf{2}^{\mathrm{op}}}$. **Bool** $\xrightarrow{\text{init}}$ **Bit** TBool $\mathbf{Q}(-,I) + \mathbf{Q}(-,I) \longrightarrow \mathbf{Q}(-,I+I)$ $\downarrow^{?}_{\mathrm{Id}} \qquad \downarrow^{?}_{\mathbf{Q}(-,I) + \mathbf{Q}(-,I)}$

Yoneda embedding does not preserve coproducts!

The subcategory $\widetilde{\mathbf{C}}$

- For every \mathcal{V} -functor $F : \mathbb{C} \to \mathcal{V} \in \overline{\mathbb{C}}$, there is an ordinary functor $F^0 : \mathbb{Q} \to \mathbf{Set}$
- Define $\widetilde{\mathbf{C}}$ to be the full subcategory of $\overline{\mathbf{C}}$, where for every $F \in \widetilde{\mathbf{C}}$, the functor $F^0 : \mathbf{Q} \to \mathbf{Set}$ is *product-preserving*.

The subcategory $\mathbf{\tilde{C}}$

- For every \mathcal{V} -functor $F : \mathbb{C} \to \mathcal{V} \in \overline{\mathbb{C}}$, there is an ordinary functor $F^0 : \mathbb{Q} \to \mathbf{Set}$
- Define $\widetilde{\mathbf{C}}$ to be the full subcategory of $\overline{\mathbf{C}}$, where for every $F \in \widetilde{\mathbf{C}}$, the functor $F^0 : \mathbf{Q} \to \mathbf{Set}$ is *product-preserving*.
- We call the embedding $\overline{y} : \mathbb{C} \to \widetilde{\mathbb{C}}$ Lambek embedding, which preserves coproducts.

The subcategory $\widetilde{\mathbf{C}}$ is a model for dynamic lifting

- $\widetilde{\mathbf{C}}$ is a reflective subcategory of $\overline{\mathbf{C}}$.
- $\mathbf{\overline{C}}$ is symmetric monoidal closed.
- $\widetilde{\mathbf{C}}$ has a strong commutative monad \widetilde{T} .
- $\widetilde{\mathbf{C}}$ has dynamic lifting morphism dynlift : $\mathbf{Bit} \to \widetilde{T}\mathbf{Bool}$.

Thank you!