A biset-enriched categorical model for Proto-Quipper with dynamic lifting

Frank Fu
Joint work with K. Kishida, N.J. Ross and P. Selinger

FMCS 2022

Motivation

Categorical semantics for Quipper and Proto-Quipper.
■ Circuit generation time and circuit execution time.

- Dynamic lifting.

Quipper/Proto-Quipper's two runtimes

Dynamic lifting

■ Parameters: circuit generation time values (e.g., Bool, Nat)
■ States: circuit execution time values (e.g., Bit, Qubit).
■ Measurement: Qubit \rightarrow Bit.

- Dynamic lifting: an operation that lifts a Bit to a Bool.

Categories for the two runtimes

- M represents the category of quantum circuits.
- Q represents the category of quantum operations.
- The interpretation functor J.

Modeling dynamic lifting

T is a strong commutative monad.

How to combine \mathbf{M} and \mathbf{Q} ?

Our answer: biset-enrichment

■ The category of bisets, i.e., Set $^{{ }^{\mathbf{2 0 p}}}$.
■ Objects: $\left(X_{0}, X_{1}, f\right)$.

$$
\begin{gathered}
X_{1} \\
\downarrow f \\
\downarrow_{0}
\end{gathered}
$$

■ Morphisms: $\left(h_{0}, h_{1}\right)$.

$$
\begin{array}{cc}
X_{1} \xrightarrow{h_{1}} Y_{1} \\
\downarrow_{f} & \\
\chi_{0} & { }^{h_{0}} \\
\downarrow^{g} & Y_{0}
\end{array}
$$

The category of bisets: Set $^{\mathbf{2 0 p}^{\text {pp }}}$

■ It is cartesian closed, complete and cocomplete.
■ $U_{0}\left(X_{0}, X_{1}, f\right)=X_{0}:$ Set $^{\mathbf{t}^{\mathbf{o p}}} \rightarrow$ Set.
■ $\Delta(X)=(X, X$, Id $):$ Set \rightarrow Set $^{\mathbf{2 0 p}}$.

- $U_{0} \dashv \Delta$
- A strong commutative monad $T=\Delta \circ U_{0}$.

The biset-enriched category \mathbf{C}

■ $\operatorname{obj}(\mathbf{C})=\operatorname{obj}(\mathbf{Q})=\operatorname{obj}(\mathbf{M})$.

- For any $A, B \in \mathbf{C}$, the hom-object $\mathbf{C}(A, B)$ is a biset:

$$
\begin{array}{r}
\mathbf{M}(A, B) \\
\downarrow^{J_{A B}} \\
\mathbf{Q}(A, B)
\end{array}
$$

The biset-enriched category \mathbf{C}

A global map $f: 1 \rightarrow \mathbf{C}(A, B)$ is the following.

The biset-enriched category $\overline{\mathbf{C}}$

Define $\overline{\mathbf{C}}:=\mathcal{V}^{\mathbf{C o p}}$, where $\mathcal{V}=\mathbf{S e t}^{\mathbf{2 p}^{\text {op }}}$.

- $\overline{\mathbf{C}}$ is monoidal closed.

■ Bit $=y \mathbf{B i t}=\mathbf{C}(-$, Bit $)$.
■ Bool $=y I+y I=\mathbf{C}(-, I)+\mathbf{C}(-, I)$.
■ A strong commuative $\mathcal{V}-\operatorname{monad} \bar{T}(F)=T \circ F$.

The biset-enriched category $\overline{\mathbf{C}}$

$\overline{\mathbf{C}}:=\mathcal{V}^{\mathbf{C o p}}$, where $\mathcal{V}=\mathbf{S e t}^{{ }^{\mathbf{o p p}}}$.

$$
\begin{aligned}
& \text { Bool } \xrightarrow{\text { init }} \text { Bit } \\
& \eta \searrow \downarrow \text { ? } \\
& \bar{T} \text { Bool } \\
& \mathbf{Q}(-, I)+\mathbf{Q}(-, I) \longrightarrow \underset{\mathrm{Id}}{\longrightarrow} \mathbf{Q}(-, I+I)
\end{aligned}
$$

The biset-enriched category $\overline{\mathbf{C}}$

$\overline{\mathbf{C}}:=\mathcal{V}^{\mathbf{C}}{ }^{\mathrm{op}}$, where $\mathcal{V}=\mathbf{S e t}^{\mathbf{2 p}^{\mathbf{o p}}}$.

Yoneda embedding does not preserve coproducts!

The subcategory $\widetilde{\mathbf{C}}$

■ For every \mathcal{V}-functor $F: \mathbf{C} \rightarrow \mathcal{V} \in \overline{\mathbf{C}}$, there is an ordinary functor $F^{0}: \mathbf{Q} \rightarrow$ Set

- Define $\widetilde{\mathbf{C}}$ to be the full subcategory of $\overline{\mathbf{C}}$, where for every $F \in \widetilde{\mathbf{C}}$, the functor $F^{0}: \mathbf{Q} \rightarrow \mathbf{S e t}$ is product-preserving.

The subcategory $\widetilde{\mathbf{C}}$

■ For every \mathcal{V}-functor $F: \mathbf{C} \rightarrow \mathcal{V} \in \overline{\mathbf{C}}$, there is an ordinary functor $F^{0}: \mathbf{Q} \rightarrow$ Set

- Define $\widetilde{\mathbf{C}}$ to be the full subcategory of $\overline{\mathbf{C}}$, where for every $F \in \widetilde{\mathbf{C}}$, the functor $F^{0}: \mathbf{Q} \rightarrow \mathbf{S e t}$ is product-preserving.
■ We call the embedding $\bar{y}: \mathbf{C} \rightarrow \widetilde{\mathbf{C}}$ Lambek embedding, which preserves coproducts.

The subcategory $\widetilde{\mathbf{C}}$ is a model for dynamic lifting

- $\widetilde{\mathbf{C}}$ is a reflective subcategory of $\overline{\mathbf{C}}$.
- $\widetilde{\mathbf{C}}$ is symmetric monoidal closed.
- $\widetilde{\mathbf{C}}$ has a strong commutative monad \widetilde{T}.
- $\widetilde{\mathbf{C}}$ has dynamic lifting morphism dynlift : Bit $\rightarrow \widetilde{T}$ Bool.

Thank you!

