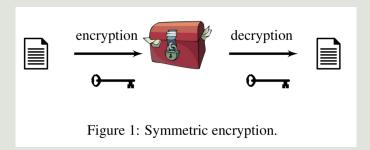
Fun with cryptography

Frank Fu

Dalhousie University

Feb 24, 2021


The age of internet

Common questions

- How to ensure our communication is secure?
- How to make sure the website is legitimate?

Encryption

Caesar cipher

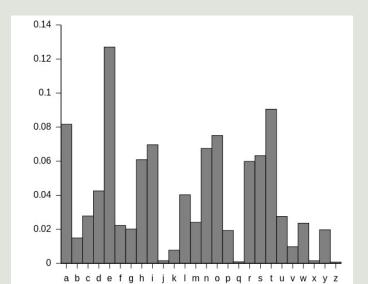
An example:

- $\blacksquare A \rightarrow C, B \rightarrow D, C \rightarrow E, ..., X \rightarrow Z, Y \rightarrow A, Z \rightarrow B$
- key: 2
- How to encrypt "MAGIC"?

Math with 26 numbers : {0, 1, 2, ..., 25}

- 10 ⊕₂₆ 7 = 17
- $1 \oplus_{26} 25 = 0$
- 10 ⊕₂₆ 17 = 1
- 10 ⊖₂₆ 7 = 3
- $\bullet 1 \ominus_{26} 25 = -24 = 26 24 = 2$

Math behind Caesar cipher


■ Encryption.

 $x \mapsto x \oplus_{26} \text{key}$

■ Decryption.

 $x \mapsto x \ominus_{26} \text{key}$

Attack on Caesar cipher: bruce force and letter frequency

Attack on Caesar cipher

Can you decrypt "ALIIP" (= 0, 11, 8, 8, 15) ?

(A,0)	(B,1)	(C,2)	(D,3)	(E,4)	(F,5)
(G,6)	(H,7)	(I,8)	(J,9)	(K,10)	(L,11)
(M,12)	(N,13)	(0,14)	(P,15)	(Q,16)	(R ,17)
(S,18)	(T,19)	(U,20)	(V,21)	(W,22)	(X,23)
(Y,24)	(Z,25)				

Attack on Caesar cipher

Can you decrypt "ALIIP" (= 0, 11, 8, 8, 15) ?

- $\blacksquare E = 4.$
- $\blacksquare 4 \oplus_{26} \text{key} = 8 = I$
- $\blacksquare key = 8 \ominus_{26} 4 = 4$
- 22, 7, 4, 4, 11 = "WHEEL"

Does the perfect cipher exist?

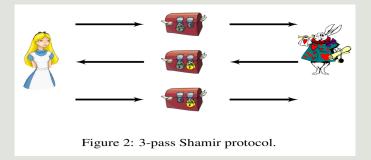
The perfect cipher: One Time Pad

■ Encryption $12 \oplus_{26} = 0$ $0 \oplus_{26} = 0$ $6 \oplus_{26} = 0$ $8 \oplus_{26} = 0$ $2 \oplus_{26} = 0$ $2 \oplus_{26} = 0$

One Time Pad

- Key must be used exactly once
- Key must be chosen randomly
- Acheive perfect secrecy
- $\blacksquare length(Key) = length(Message)$

Cryptographic protocol


- Alice and Bob has their own keys and locks.
- A box with two places for locks.
- How can Alice and Bob communicate securely?

Cryptographic protocol

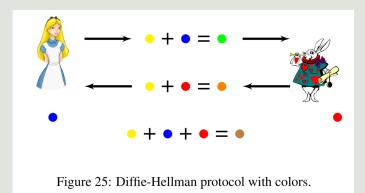
An example.

- Alice and Bob has their own keys and locks.
- The lock must be open and lock by the key.
- A box with two places for locks.
- How can Alice and Bob communicate securely?

3-pass Shamir protocol

- 1. Alice \rightarrow Bob $\{m\}_a$
- 2. Bob \rightarrow Alice $\{\{m\}_a\}_b$
- 3. Key commutative $\{\{m\}_a\}_b = \{\{m\}_b\}_a$
- 4. Alice \rightarrow Bob $\{m\}_b$

3-pass Shamir protocol


It allows us to communicate without shared key. But.

Diffie-Hellman key exchange protocol

- Alice and Bob want to negotiate a share key.
- The negotiation can be done over an un-encrypted public channel.

Diffie-Hellman protocol in colors

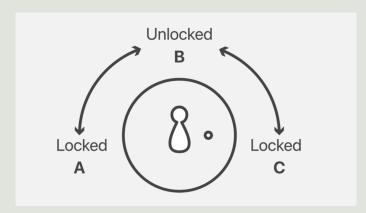
Assumptions: colors are easy to mix and hard to separate.

Diffie-Hellman protocol in math

Given a prime p and a well-chosen number a.

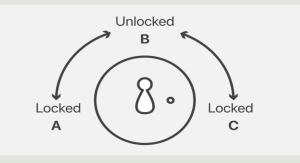
• It is very easy to compute $r = a^k \pmod{p}$.

■ It is very hard to compute *k* from *r*, *a* and *p*. This is called *discrete logarithm problem*.

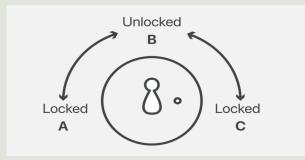

Diffie-Hellman protocol in math

- 1. Alice and Bob agree to use a large prime *p* and a special number *a*.
- 2. Alice chooses a secret integer k_1 and sends $a^{k_1} \pmod{p}$ to Bob.
- 3. Bob chooses a secret integer k_2 and sends $a^{k_2} \pmod{p}$ to Alice.
- 4. Alice computes $(a^{k_2})^{k_1} \pmod{p}$.
- 5. Bob computes $(a^{k_1})^{k_2} \pmod{p}$.

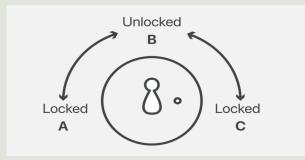
Note that $(a^{k_2})^{k_1} = (a^{k_1})^{k_2}$.


Public key protocol using a special locker

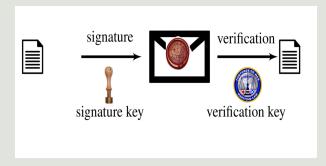
- Private key can only turn to the left
- Public key can only turn to the right


Public key protocol using a special locker

- Private key can only turn to the left
- Public key can only turn to the right
- Alice makes a few dozen copies of public key
- Alice shares public key to everyone
- Alice keeps private key to herself


How to send a message to Alice?

- Private key can only turn to the left
- Public key can only turn to the right



Can we be sure a message is from Alice?

- Private key can only turn to the left
- Public key can only turn to the right

Digital signature

Public key protocol

- Public key protocol support both encryption and digital signature.
- Today the most commonly used public key protocol is called RSA.
- It is named after Ron Rivest, Adi Shamir and Leonard Adleman.
- It is also the first public key encryption scheme.

Conclusion

- We learned Caesar's cipher and the perfect One Time Pad.
- We learned about 3-pass Shamir protocol.
- We learned about Diffie-Hellman key exchange protocol.
- We learned about the basic of Public key protocol.

References

- How to Explain Modern Security Concepts to your Children, Xavier Bultel, Jannik Dreier, Pascal Lafourcade, Malika More
- How Does Public Key Encryption Work? https://www.cloudflare.com/learning/ssl/ how-does-public-key-encryption-work/