Fun with cryptography

Frank Fu

Dalhousie University

Feb 24, 2021
The age of internet
Common questions

- How to ensure our communication is secure?
- How to make sure the website is legitimate?
Encryption

Figure 1: Symmetric encryption.
Caesar cipher

An example:

- A → C, B → D, C → E, ..., X → Z, Y → A, Z → B
- key: 2
- How to encrypt “MAGIC”?
Math with 26 numbers : \(\{0, 1, 2, \ldots, 25\} \)

- \(10 \oplus_{26} 7 = 17 \)
- \(1 \oplus_{26} 25 = 0 \)
- \(10 \oplus_{26} 17 = 1 \)
- \(10 \oplus_{26} 7 = 3 \)
- \(1 \oplus_{26} 25 = -24 = 26 - 24 = 2 \)
Math behind Caesar cipher

- **Encryption.**

 \[x \mapsto x \oplus_{26} \text{key} \]

- **Decryption.**

 \[x \mapsto x \ominus_{26} \text{key} \]

- “MAGIC” = 12, 0, 6, 8, 2

 \[\mapsto 14, 2, 8, 10, 4 = \text{“OCIKE”} \]
Attack on Caesar cipher: brute force and letter frequency
Attack on Caesar cipher

Can you decrypt “ALIIP” (= 0, 11, 8, 8, 15) ?

(A,0) (B,1) (C,2) (D,3) (E,4) (F,5)
(G,6) (H,7) (I,8) (J,9) (K,10) (L,11)
(M,12) (N,13) (O,14) (P,15) (Q,16) (R,17)
(S,18) (T,19) (U,20) (V,21) (W,22) (X,23)
(Y,24) (Z,25)
Attack on Caesar cipher

Can you decrypt “ALIIP” (= 0, 11, 8, 8, 15) ?

- $E = 4$.
- $4 \oplus_{26} \text{key} = 8 = I$
- key = $8 \ominus_{26} 4 = 4$
- 22, 7, 4, 4, 11 = “WHEEL”
Does the perfect cipher exist?
The perfect cipher: One Time Pad

- “MAGIC” = 12, 0, 6, 8, 2
- Encryption
 12 \oplus_{26} _ =
 0 \oplus_{26} _ =
 6 \oplus_{26} _ =
 8 \oplus_{26} _ =
 2 \oplus_{26} _ =
One Time Pad

- Key must be used exactly once
- Key must be chosen randomly
- Achieve perfect secrecy
- $\text{length}(\text{Key}) = \text{length}(\text{Message})$
Cryptographic protocol

- Alice and Bob has their own keys and locks.
- A box with two places for locks.
- How can Alice and Bob communicate securely?
Cryptographic protocol

An example.
- Alice and Bob has their own keys and locks.
- The lock must be open and lock by the key.
- A box with two places for locks.
- How can Alice and Bob communicate securely?

Figure 2: 3-pass Shamir protocol.
3-pass Shamir protocol

1. Alice → Bob
 $\{m\}_a$

2. Bob → Alice
 $\{\{m\}_a\}_b$

3. Key commutative $\{\{m\}_a\}_b = \{\{m\}_b\}_a$

4. Alice → Bob
 $\{m\}_b$
3-pass Shamir protocol

It allows us to communicate without shared key. But.
Diffie-Hellman key exchange protocol

- Alice and Bob want to negotiate a share key.
- The negotiation can be done over an un-encrypted public channel.
Diffie-Hellman protocol in colors

Assumptions: colors are easy to mix and hard to separate.

Figure 25: Diffie-Hellman protocol with colors.
Diffie-Hellman protocol in math

Given a prime \(p \) and a well-chosen number \(a \).

- It is very easy to compute \(r = a^k \pmod{p} \).
- It is very hard to compute \(k \) from \(r, a \) and \(p \).

This is called \textit{discrete logarithm problem}.
1. Alice and Bob agree to use a large prime p and a special number a.
2. Alice chooses a secret integer k_1 and sends $a^{k_1} \pmod{p}$ to Bob.
3. Bob chooses a secret integer k_2 and sends $a^{k_2} \pmod{p}$ to Alice.
4. Alice computes $(a^{k_2})^{k_1} \pmod{p}$.
5. Bob computes $(a^{k_1})^{k_2} \pmod{p}$.

Note that $(a^{k_2})^{k_1} = (a^{k_1})^{k_2}$.

Diffie-Hellman protocol in math
Public key protocol using a special locker

- Private key can only turn to the left
- Public key can only turn to the right
Public key protocol using a special locker

- Private key can only turn to the left
- Public key can only turn to the right
- Alice makes a few dozen copies of public key
- Alice shares public key to everyone
- Alice keeps private key to herself
How to send a message to Alice?

- Private key can only turn to the left
- Public key can only turn to the right
Can we be sure a message is from Alice?

- Private key can only turn to the left
- Public key can only turn to the right
Digital signature
Public key protocol

- Public key protocol support both encryption and digital signature.
- Today the most commonly used public key protocol is called RSA.
- It is named after Ron Rivest, Adi Shamir and Leonard Adleman.
- It is also the first public key encryption scheme.
Conclusion

- We learned Caesar’s cipher and the perfect One Time Pad.
- We learned about 3-pass Shamir protocol.
- We learned about Diffie-Hellman key exchange protocol.
- We learned about the basic of Public key protocol.
References

- *How to Explain Modern Security Concepts to your Children*, Xavier Bultel, Jannik Dreier, Pascal Lafourcade, Malika More
- *How Does Public Key Encryption Work?*
 https://www.cloudflare.com/learning/ssl/how-does-public-key-encryption-work/