
Designing Quantum Programming Languages with
Types

Frank Fu

Computer Science and Engineering Department, UofSC

1

Why quantum programming languages?

▶ Researchers have shown quantum algorithms can offer
substantial speed-up for certain computing tasks.

▶ Advances in quantum hardware from companies like IBM and
Google.

▶ Quantum algorithms are usually expressed using quantum
circuits.

▶ Quantum algorithms are commonly expressed at a high level.
▶ Debugging quantum algorithms can be expensive.

2

My research interest

Build tools to facilitate programming quantum computers.
▶ How to design a high-level programming language for quantum

circuits?
▶ How to verify quantum programs?
▶ How to run a high-level programming language on actual

quantum computer?
▶ What algorithms to run on current quantum computer?

3

Why types?

▶ Lightweight specifications of programs.
▶ Allow compiler to enforce invariants via type checking.
▶ A well-typed program satisfies certain properties.

4

Background on types: an idealized programming language

▶ Programs M,N := x | λx .M | MN.

▶ Types A,B := C | A → B .

▶ Typing environment Γ = x1 : A1, ..., xn : An.

▶ Typing judgment Γ ⊢ M : A.

▶ Typing rules

(x : A) ∈ Γ

Γ ⊢ x : A

Γ, x : A ⊢ M : B

Γ ⊢ λx .M : A → B
Γ ⊢ M : A → B Γ ⊢ N : A

Γ ⊢ MN : B

5

Type safety

▶ A type checker checks Γ ⊢ M : A.

▶ An evaluator performs evaluation M ⇓ V .

▶ Type safety
If Γ ⊢ M : A and M ⇓ V , then Γ ⊢ V : A.

6

Fancy types

▶ Linear types: A ⊸ B .

▶ Dependent types: (n : Nat) → VecAn → VecAn.

▶ Types with modalities: A →α B .

7

Types for Quantum Computing

The basic types in Quantum Computing.
▶ Bit: |0⟩, |1⟩.

▶ Qubit: |ϕ⟩ = α|0⟩+ β|1⟩, where α, β ∈ C, |α|2 + |β|2 = 1.

▶ Multi-qubits are represented by a tensor product.
Qubit ⊗ Qubit,Qubit ⊗ Qubit ⊗ Qubit,Qubit ⊗ Bit, etc.

8

Qubits are resource

▶ No cloning: one can not duplicate a qubit.

(((((((((hhhhhhhhhdup x = (x, x)

▶ Qubit does not exist in a vacuum.
Init0 : Unit ⊸ Qubit
let x = Init0 () in ...

▶ Qubit does not disappear into the ether.
Discard : Qubit ⊸ Unit
let x = Init0 () in ...
let _ = Discard x in ...

9

Updating Qubits: unitary operations

One way to update qubits is via unitary operations.
▶ Reversibility: UU† = U†U = I .

▶ Linearity: U(α|0⟩+ β|1⟩) = αU|0⟩+ βU|1⟩.

10

Common quantum gates
▶ Hadamard gate.

H|0⟩ = 1/
√

2(|0⟩+ |1⟩)
H|1⟩ = 1/

√
2(|0⟩ − |1⟩)

▶ Phase gate.

S |0⟩ = |0⟩
S |1⟩ = i |1⟩

▶ T gate.
T |0⟩ = |0⟩
T |1⟩ = ω|1⟩,where ω2 = i

▶ CNOT gate.

CNOT|00⟩ = |00⟩ CNOT|01⟩ = |01⟩
CNOT|10⟩ = |11⟩ CNOT|11⟩ = |10⟩

11

Types for quantum gates
▶ Hadamard gate.

H

H : Qubit ⊸ Qubit

▶ Phase gate.
S

S : Qubit ⊸ Qubit

▶ T gate.
T

T : Qubit ⊸ Qubit

▶ CNOT gate.
•

CNOT : Qubit ⊗ Qubit ⊸ Qubit ⊗ Qubit

12

Measurement

Measurement is needed to readout the bit information from qubit.

Meas

Meas : Qubit ⊸ Bit

▶ M(α|0⟩+ β|1⟩) = |0⟩ with probability |α|2.
▶ M(α|0⟩+ β|1⟩) = |1⟩ with probability |β|2.

13

Programming quantum circuits in Proto-Quipper

bell00 : !(Unit -> Qubit * Qubit)
bell00 u =

let a = Init0 ()
b = Init0 ()

in CNot b (H a)

0

0

H

14

Programming quantum circuits in Proto-Quipper

alice : !(Qubit -> Qubit -> Bit * Bit)
alice a q =

let (a, q) = CNot a q
q = H q

in (Meas a, Meas q)

H

Meas

Meas

15

Programming quantum circuits in Proto-Quipper

bob : !(Qubit -> Bit -> Bit -> Qubit)
bob q x y =

let (q, x) = C_X q x
(q, y) = C_Z q y
_ = Discard x
_ = Discard y

in q

X Z

16

Programming quantum circuits in Proto-Quipper

tele : !(Qubit -> Qubit)
tele q =

let (b, a) = bell00 ()
(x, y) = alice a q
z = bob b x y

in z

0

0

H

H

Meas

Meas

X Z

17

Interleaving circuit generation time and circuit execution via
dynamic lifting

Code

0

0

H

H

Meas

Meas

X Z
Circuit

Quantum computer

Nat, Bool

Qubit, Bit

18

Types for dynamic lifting

▶ Γ ⊢α M : A, where α = 0 | 1.

▶ Dynamic lifting.
Γ ⊢α M : Bit

Γ ⊢0 dynlift M : Bool

▶ Type system distinguishes computation that uses dynamic
lifting vs computation that corresponds to quantum circuits.

19

Programming with dynamic lifting

v3 : !(Qubit -> Qubit)
v3 q =

let a1 = tgate_inv (H (Init0 ()))
a2 = H (Init0 ())
(a1, a2) = CNot a1 a2
a1 = H (TGate a1)

in if dynlift (Meas a1)
then

let _ = Discard (Meas a2)
in v3 q

else let q = ZGate (TGate q)
(a2, q) = CNot a2 q
a2 = H (TGate a2)

in if dynlift (Meas a2)
then v3 (ZGate q)
else q

0 H T*

0 H

T H Meas

T Z

T H Meas

20

Future research

▶ How do we verify the correctness of a quantum program?
▶ How to prove two quantum circuits are equal?
▶ How to develop tests to ensure the programs perform correctly?

▶ How do we compile a high-level quantum programs to lower
level languages (e.g., QIR, OpenQasm)?

▶ Suppose we have a 127 Qubits machine, what algorithms
should we run on it?

21

Thank you!

22

