A biset-enriched categorical model for Proto-Quipper with dynamic lifting

Frank Fu

Joint work with K. Kishida, N.J. Ross and P. Selinger

QPL 2022

Motivation

Construct a concrete categorical model for dynamic lifting.

- Circuit generation time and circuit execution time.
- Dynamic lifting.

Categories for the two runtimes

- M and Q are symmetric monoidal categories.
- $obj(\mathbf{M}) = obj(\mathbf{Q})$.
- **Q** has a coproduct **Bit** = I + I.
- **Q** is enriched in convex spaces.
- The functor *J* is identity on objects and strict symmetric monoidal.

Modeling dynamic lifting

 \blacksquare *T* is a commutative monad.

How to combine **M** and **Q**?

 $\mathbf{M} \\ \downarrow^J \\ \mathbf{Q} \\$

Our answer: biset-enrichment

 ■ The category of *bisets*, i.e., Set^{2^{op}}.
■ Objects: (X₀, X₁, f).
X₁ ↓ f X₀

• Morphisms: (h_0, h_1) .

$$\begin{array}{ccc} X_1 & \stackrel{h_1}{\longrightarrow} & Y_1 \\ \downarrow^f & & \downarrow^g \\ X_0 & \stackrel{h_0}{\longrightarrow} & Y_0 \end{array}$$

The category of bisets: **Set**^{2°P}

■ It is cartesian closed, complete and cocomplete.

- $\blacksquare U_0(X_0, X_1, f) = X_0 : \mathbf{Set}^{2^{\mathrm{op}}} \to \mathbf{Set}.$
- $\blacksquare \ \Delta(X) = (X, X, \mathrm{Id}) : \mathbf{Set} \to \mathbf{Set}^{2^{\mathrm{op}}}.$
- $\blacksquare \ U_0 \dashv \Delta$
- A commutative monad $T = \Delta \circ U_0$.

V-enriched categories

Let \mathcal{V} be a monoidal category. A \mathcal{V} -enriched category **A** is given by the following:

- A class of objects, also denoted **A**.
- For any $A, B \in \mathbf{A}$, an object $\mathbf{A}(A, B)$ in \mathcal{V} .
- For any $A \in \mathbf{A}$, a morphism $u_A : I \to \mathbf{A}(A, A)$ in \mathcal{V} .
- For any $A, B, C \in \mathbf{A}$, a morphism $c_{A,B,C} : \mathbf{A}(A, B) \otimes \mathbf{A}(B, C) \rightarrow \mathbf{A}(A, C)$ in \mathcal{V} .
- u and c must satisfy suitable diagrams in \mathcal{V} .

•
$$obj(\mathbf{C}) = obj(\mathbf{Q}) = obj(\mathbf{M}).$$

For any $A, B \in \mathbb{C}$, the hom-object $\mathbb{C}(A, B)$ is a biset:

 $\mathbf{M}(A, B)$ $\downarrow^{J_{AB}}$ $\mathbf{Q}(A, B)$

A global map $f : 1 \rightarrow \mathbf{C}(A, B)$ is the following.

The biset-enriched category $\overline{\mathbf{C}}$

Define
$$\overline{\mathbf{C}} := \mathcal{V}^{\mathbf{C}^{\mathrm{op}}}$$
, where $\mathcal{V} = \mathbf{Set}^{2^{\mathrm{op}}}$.

C is monoidal closed.

Bit =
$$y$$
Bit = $C(-, Bit)$.

Bool =
$$yI + yI = C(-, I) + C(-, I)$$
.

• A commutive \mathcal{V} -monad $\overline{T}(F) = T \circ F$.

 $\overline{\mathbf{C}} := \mathcal{V}^{\mathbf{C}^{\mathrm{op}}}$, where $\mathcal{V} = \mathbf{Set}^{\mathbf{2}^{\mathrm{op}}}$.

 $\overline{\mathbf{C}} := \mathcal{V}^{\mathbf{C}^{\mathrm{op}}}$, where $\mathcal{V} = \mathbf{Set}^{\mathbf{2}^{\mathrm{op}}}$. **Bool** $\xrightarrow{\text{init}}$ **Bit** TBool $\mathbf{Q}(-,I) + \mathbf{Q}(-,I) \longrightarrow \mathbf{Q}(-,I+I)$ $\downarrow^{?}_{\mathrm{Id}} \qquad \downarrow^{?}_{\mathbf{Q}(-,I) + \mathbf{Q}(-,I)}$

Yoneda embedding does not preserve coproducts!

The subcategory $\widetilde{\mathbf{C}}$

- For every \mathcal{V} -functor $F : \mathbb{C} \to \mathcal{V} \in \widetilde{\mathbb{C}}$, there is an ordinary functor $F^0 : \mathbb{Q} \to \mathbf{Set}$
- Define $\widetilde{\mathbf{C}}$ to be the full subcategory of $\overline{\mathbf{C}}$, where for every $F \in \widetilde{\mathbf{C}}$, the functor $F^0 : \mathbf{Q} \to \mathbf{Set}$ is *product-preserving*.
- We call the embedding $\overline{y} : \mathbf{C} \to \widetilde{\mathbf{C}}$ Lambek embedding.

The subcategory $\widetilde{\mathbf{C}}$

 $\widetilde{\mathbf{C}}$ satisfies all the requirements for being a model for dynamic lifting.

- $\widetilde{\mathbf{C}}$ is a reflective subcategory of $\overline{\mathbf{C}}$.
- $\mathbf{\overline{C}}$ is symmetric monoidal closed.
- **\widetilde{\mathbf{C}}** has a commutative monad \widetilde{T} .
- $\widetilde{\mathbf{C}}$ has dynamic lifting morphism dynlift : **Bit** $\rightarrow \widetilde{T}$ **Bool**.

Thank you!