Lambda Encodings in Type Theory

Peng Fu

Advisor: Prof. Aaron Stump
Department of Computer Science
Outline

▶ Introduction

▶ An Attempt to Expressiveness through Internalization.
 A Framework for Internalizing Relations into Type Theory. Peng Fu, Aaron Stump, Jeff Vaughan. PSATTT’11

▶ Lambda Encodings with Dependent Type.
 Self Types for Dependently Typed Lambda Encodings. Peng Fu, Aaron Stump. RTA-TLCA 2014

▶ Lambda Encoding with Comprehension.

▶ Implementation and Future Improvements.
Common features of functional programming languages:

- Algebraic data type.
- Pattern matching, recursion and functional application.
- Type inference.
data List A where
 nil :: List A
 cons :: A -> List A -> List A
deriving Ind

(++) nil l = l
(++) (cons u l') l = cons u (l'++ l)

--inferred
(++) :: forall A . List A -> List A -> List A
We would like to reason about the program.

```plaintext
theorem assoc . forall l1 l2 l3 A . l1 :: List A ->
    Eq ((l1 ++ l2) ++ l3) (l1 ++ (l2 ++ l3))
proof
    ... (19 lines proofs)
qed
```
Introduction

- How to implement the theorem proving feature?
 - Build-in user defined data type.
 - Assume induction principle.
 - Assume other axioms as needed.

- Why such design decision?
 - Seems intuitive and convenient.
 - Hard to prove certain principles from ground up.

- What is the cost?
 - Complicated execution model for program.
 - Not obvious to see the proof system is consistent.
Introduction

How to implement the theorem proving feature?
 - Build-in user defined data type.
 - Assume induction principle.
 - Assume other axioms as needed.

Why such design decision?
 - Seems intuitive and convenient.
 - Hard to prove certain principles from ground up.
Introduction

How to implement the theorem proving feature?
 - Build-in user defined data type.
 - Assume induction principle.
 - Assume other axioms as needed.

Why such design decision?
 - Seems intuitive and convenient.
 - Hard to prove certain principles from ground up.

What is the cost?
 - Complicated execution model for program.
 - Not obvious to see the proof system is consistent.
Introduction: Thesis

- Basic assumptions.
 - Lambda calculus.
 - Higher order quantified minimal logic (\rightarrow, \forall).
 - Comprehension principle.
 - Extensionality.
Introduction: Thesis

- Basic assumptions.
 - Lambda calculus.
 - Higher order quantified minimal logic (\rightarrow, \forall).
 - Comprehension principle.
 - Extensionality.
- Derivations.
 - Algebraic data.
 - (\lor, \land, \exists) fragment.
 - Induction principle (including strong induction).
 - Principle of explosion.
Outline

- Introduction

- **An Attempt to Expressiveness through Internalization.**
 A Framework for Internalizing Relations into Type Theory. Peng Fu, Aaron Stump, Jeff Vaughan. PSATTT’11

- **Lambda Encodings with Dependent Type.**
 Self Types for Dependently Typed Lambda Encodings. Peng Fu, Aaron Stump. RTA-TLCA 2014

- **Lambda Encoding with Comprehension.**

- **Implementation and Future Improvements.**
The Internalization Approach

- Types \(T ::= X \mid T \rightarrow T' \mid \Pi x : T.T' \mid \forall X.T \)
The Internalization Approach

- Types $T ::= X \mid T \to T' \mid \Pi x : T.T' \mid \forall X.T$
- Equality between terms, subtype and term-type membership.
The Internalization Approach

- Types $T ::= X \mid T \to T' \mid \Pi x : T.T' \mid \forall X.T$
- Equality between terms, subtype and term-type membership.
- Extend types
 $F ::= X \mid F \to F' \mid \Pi x : F.F' \mid \forall X.F \mid t = t' \mid t \in T \mid T <: T'$
The Internalization Approach

Additional rules:

\[
\begin{align*}
\frac{t_1 = t_2 \in D}{\Gamma \vdash \text{EqAxiom} : t_1 = t_2}
\end{align*}
\]

\[
\begin{align*}
\frac{\Gamma \vdash t : [t_1/x](t_3 = t_4) \quad \Gamma \vdash t' : t_1 = t_2}{\Gamma \vdash t : [t_2/x](t_3 = t_4)}
\end{align*}
\]

\[
\begin{align*}
\frac{t \in T' \in D}{\Gamma \vdash \text{MembAxiom} : t \in T'}
\end{align*}
\]

\[
\begin{align*}
\frac{\Gamma \vdash t : T \quad \Gamma \vdash t' : t \in T'}{\Gamma \vdash t : T'}
\end{align*}
\]
The Internalization Approach

- Proved weak normalization.
The Internalization Approach

- Proved weak normalization.
- Limitations.
 - Additional typing rules for each new type.
 - Semantics is not modular.
 - Type preservation fails.
The Internalization Approach

- Proved weak normalization.
- Limitations.
 - Additional typing rules for each new type.
 - Semantics is not modular.
 - Type preservation fails.
- What we learned: reify meta-level relation as type.
Outline

- Introduction
- An Attempt to Expressiveness through Internalization.
 A Framework for Internalizing Relations into Type Theory. Peng Fu, Aaron Stump, Jeff Vaughan. PSATTT’11
- Lambda Encodings with Dependent Type.
 Self Types for Dependently Typed Lambda Encodings. Peng Fu, Aaron Stump. RTA-TLCA 2014
- Lambda Encoding with Comprehension.
- Implementation and Future Improvements.
Lambda Encodings with Dependent Type

- Motivations:
 - All dependent type systems include datatype.
 - Surprisingly daunting to formalize datatype system.
Lambda Encodings with Dependent Type

- Motivations:
 - All dependent type systems include datatype.
 - Surprisingly daunting to formalize datatype system.
- On the other hand.
 - Church encoding, Parigot encoding and Scott encoding.
 - Church encoding is available in System \mathbf{F}
Lambda Encodings with Dependent Type

Why not use Church encoded data?

- Inefficient to retrieve subdata.
- Can not prove $0 \neq 1$.
- Induction principle is not derivable.
Church Encoding: Inefficiency

- Church numerals: \(\bar{0} := \lambda s.\lambda z.z \), \(\bar{S} := \lambda n.\lambda s.\lambda z.s \ (n \ s \ z) \)
 \(\bar{3} := \lambda s.\lambda z.s \ (s \ (s \ z)) \)

- Linear time predecessor for Church numerals.
 \(\text{pred} \ n := \text{fst} \ (n \ (\lambda p.(\text{snd} \ p, \bar{S} \ (\text{snd} \ p)))) \ (0, 0) \)

- Parigot numerals: \(\tilde{0} := \lambda s.\lambda z.z \), \(\bar{S} := \lambda n.\lambda s.\lambda z.s \ (n \ s \ z) \)
 \(\tilde{3} := \lambda s.\lambda z.s \ (s \ (s \ (s \ 0 \ z))) \)

- Constant time Parigot predecessor.
 \(\text{pred}_p \ n = n \ (\lambda x.\lambda y.x) \ 0 \)
Church Encoding: Underivability of $0 \neq 1$

- **Calculus of Construction (CC)**

 $x =_A y \quad := \quad \Pi C : A \rightarrow *.C \ x \rightarrow C \ y$

 $\bot \quad := \quad \Pi X : *.X$

 $0 =_{\text{Nat}} 1 \rightarrow \bot \quad := \quad (\Pi C : \text{Nat} \rightarrow *.C \ 0 \rightarrow C \ 1) \rightarrow \Pi X : *.X$

Church Encoding: Underivability of $0 \neq 1$

- **Calculus of Construction (CC)**

\[
x \equiv_A y := \Pi C : A \rightarrow \ast.C \ x \rightarrow C \ y \\
\bot := \Pi X : \ast.X \\
0 \equiv_{\text{Nat}} 1 \rightarrow \bot := (\Pi C : \text{Nat} \rightarrow \ast.C \ 0 \rightarrow C \ 1) \rightarrow \Pi X : \ast.X
\]

- $0 \equiv_{\text{Nat}} 1 \rightarrow \bot$ is underivable.
 - $\vdash_{cc} t : 0 \not\equiv_{\text{Nat}} 1$ implies $\vdash_F |t| : |0 \not\equiv_{\text{Nat}} 1|
 - $|0 \equiv_{\text{Nat}} 1 \rightarrow \bot| := \Pi C.(C \rightarrow C) \rightarrow \Pi X.X$ in F.
Church Encoding: Underivability of $0 \neq 1$

- Calculus of Construction (CC)

$$x =_A y := \Pi C : A \to \ast . C \; x \to C \; y$$

$$\bot := \Pi X : \ast . X$$

$$0 =_{\text{Nat}} 1 \to \bot := (\Pi C : \text{Nat} \to \ast . C \; 0 \to C \; 1) \to \Pi X : \ast . X$$

- $0 =_{\text{Nat}} 1 \to \bot$ is underivable.

 - $\vdash_{cc} t : 0 \neq_{\text{Nat}} 1$ implies $\vdash_{F} |t| : |0 \neq_{\text{Nat}} 1|$

 - $|0 =_{\text{Nat}} 1 \to \bot| := \Pi C . (C \to C) \to \Pi X . X$ in F.

Church Encoding: Underivability of $0 \neq 1$

- Calculus of Construction:

$$x =_A y \quad := \quad \Pi C : A \rightarrow \ast . C x \rightarrow C y$$
$$\bot \quad := \quad \Pi A : \ast . \Pi x : A . \Pi y : A . x =_A y$$
$$0 =_{\text{Nat}} 1 \rightarrow \bot \quad := \quad (\Pi C : \text{Nat} \rightarrow \ast . C 0 \rightarrow C 1)$$
$$\quad \rightarrow (\Pi A : \ast . \Pi x : A . \Pi y : A . x =_A y)$$

- \bot is uninhabited in CC.
- $0 =_{\text{Nat}} 1 \rightarrow \bot$ is derivable in CC.
- Weak principle of explosion.
Church Encoding: Underivability of Induction Principle

- Induction is expressable in CC.
 \(\Pi P : \text{Nat} \rightarrow \ast. (\Pi y : \text{Nat}. (P y \rightarrow P (S y))) \rightarrow P \bar{0} \rightarrow \Pi x : \text{Nat}. P x. \)

1Metamathematical investigations of a calculus of constructions, T. Coquand.
Church Encoding: Underderivability of Induction Principle

- Induction is expressable in CC.
 \[\Pi P : \text{Nat} \to \ast. (\Pi y : \text{Nat}. (Py \to P(Sy))) \to P\,\bar{0} \to \Pi x : \text{Nat}. P\,x.\]
- Induction is not provable in CC \(^1\).

\(^1\)Metamathematical investigations of a calculus of constructions, T. Coquand.
Church Encoding: Underivability of Induction Principle

- Induction is expressable in CC.
 \[\Pi P : \text{Nat} \to \ast. (\Pi y : \text{Nat}. (Py \to P(Sy))) \to P \bar{0} \to \Pi x : \text{Nat}. P x. \]
- Induction is not provable in CC \(^1\).
- Self Type: \(\iota x. F\).

\[
\frac{\Gamma \vdash t : \iota x. F}{\Gamma \vdash t : [t/x]F} \quad \frac{\Gamma \vdash t : [t/x]F}{\Gamma \vdash t : \iota x. F} \quad \frac{\Gamma \vdash t : \iota x. F}{\Gamma \vdash t : \iota x. F}
\]

\(^1\)Metamathematical investigations of a calculus of constructions, T. Coquand.
Church Encoding: Underivability of Induction Principle

- Induction is expressable in CC.
 \[\Pi P : \text{Nat} \rightarrow \star.(\Pi y : \text{Nat}.(P y \rightarrow P(Sy))) \rightarrow P \bar{0} \rightarrow \Pi x : \text{Nat}.P x. \]

- Induction is not provable in CC \(^1\).

- Self Type: \(\iota x. F\).
 \[
 \begin{align*}
 \Gamma \vdash t : \iota x. F \\
 \Gamma \vdash t : [t/x]F \\
 \Gamma \vdash t : [t/x]F \\
 \Gamma \vdash t : [t/x]F \\
 \Gamma \vdash t : \iota x. F
 \end{align*}
 \]

- We also need recursive definition.
 Nat :=
 \[\iota x. \Pi P : \text{Nat} \rightarrow \star.(\Pi y : \text{Nat}.(P y \rightarrow P(Sy))) \rightarrow P \bar{0} \rightarrow P x \]

\(^1\)Metamathematical investigations of a calculus of constructions, T. Coquand.
Church Encoding: Underivability of Induction Principle

- Induction is expressable in CC.
 \[\Pi P : \text{Nat} \rightarrow \ast . (\Pi y : \text{Nat}. (Py \rightarrow P(Sy))) \rightarrow P \bar{0} \rightarrow \Pi x : \text{Nat}.P x. \]
- Induction is not provable in CC \(^1\).
- Self Type: \(\iota x. F\).
 \[
 \frac{\Gamma \vdash t : \iota x. F}{\Gamma \vdash t : [t/x]F} \quad \frac{\Gamma \vdash t : [t/x]F}{\Gamma \vdash t : \iota x. F}
 \]
- We also need recursive definition.
 Nat :=
 \[\iota x. \Pi P : \text{Nat} \rightarrow \ast . (\Pi y : \text{Nat}. (Py \rightarrow P(Sy))) \rightarrow P \bar{0} \rightarrow P x \]
- \(\bar{0} : \text{Nat}, S : \text{Nat} \rightarrow \text{Nat}\)

\(^1\)Metamathematical investigations of a calculus of constructions, T. Coquand.
Church Encoding: Underivability of Induction Principle

- Induction is expressable in CC.
 \[\Pi P : \text{Nat} \rightarrow \ast . (\Pi y : \text{Nat}. (P y \rightarrow P (S y))) \rightarrow P \bar{0} \rightarrow \Pi x : \text{Nat}. P x. \]

- Induction is not provable in CC \(^1\).

- Self Type: \(\iota x. F \).

\[
\begin{align*}
\Gamma \vdash t : \iota x. F & \quad \Gamma \vdash t : [t/x] F \\
\Gamma \vdash t : [t/x] F & \quad \Gamma \vdash t : \iota x. F
\end{align*}
\]

- We also need recursive definition.

\[
\text{Nat} := \iota x . \Pi P : \text{Nat} \rightarrow \ast . (\Pi y : \text{Nat}. (P y \rightarrow P (S y))) \rightarrow P \bar{0} \rightarrow P x
\]

- \(\bar{0} : \text{Nat} \), \(S : \text{Nat} \rightarrow \text{Nat} \)

- Induction now is derivable.

\[
\text{ind} := \lambda s . \lambda z . \lambda n . n \ s \ z.
\]

\(^1\) Metamathematical investigations of a calculus of constructions, T. Coquand.
Summary

- $0 \neq 1$ is provable with a change of notion of contradiction.
- Introduce Self type to derive induction principle.
- Devised a type system called S.
- We prove S is consistent and type preserving.
Outline

- Introduction
- An Attempt to Expressiveness through Internalization.
 A Framework for Internalizing Relations into Type Theory. Peng Fu, Aaron Stump, Jeff Vaughan. PSATTT’11
- Lambda Encodings with Dependent Type.
 Self Types for Dependently Typed Lambda Encodings. Peng Fu, Aaron Stump. RTA-TLCA 2014
- Lambda Encoding with Comprehension.
- Implementation and Future Improvements.
Lambda Encoding with Comprehension

Motivation.

- Understand self type.
- Reason about Scott numerals.
 - Direct translation from functional program to Scott-encoded lambda term.
 - Resistance to intuitionistic typing.
Lambda Encoding with Comprehension

- Self type mechanism:
 \[\Gamma \vdash t : \iota x.F \iff \Gamma \vdash t : [t/x]F \]
Lambda Encoding with Comprehension

- Self type mechanism:
 \[\Gamma \vdash t : \lambda x. F \iff \Gamma \vdash t : [t/x]F \]

- Comprehension:
 \[t \in \{ x \mid F[x] \} \iff F[t] \]
Lambda Encoding with Comprehension

- **Self type mechanism:**
 \[\Gamma \vdash t : \iota x.F \iff \Gamma \vdash t : [t/x]F \]

- **Comprehension:**
 \[t \epsilon \{ x \mid F[x] \} \iff F[t] \]

- **What if?**
 \[t \epsilon (\iota x.F[x]) \iff F[t] \]
Lambda Encoding with Comprehension

- Self type mechanism:
 \[\Gamma \vdash t : \lambda x. F \iff \Gamma \vdash t : [t/x]F \]

- Comprehension:
 \[t \in \{ x \mid F[x] \} \iff F[t] \]

- What if?
 \[t \in (\lambda x. F[x]) \iff F[t] \]

- In the work of internalization.
 \[t \in T \text{ as type} \]
Lambda Encoding with Comprehension

- **Self type mechanism:**
 \[\Gamma \vdash t : \iota x.F \iff \Gamma \vdash t : [t/x]F \]

- **Comprehension:**
 \[t \in \{ x \mid F[x] \} \iff F[t] \]

- **What if?**
 \[t \in (\iota x.F[x]) \iff F[t] \]

- **In the work of internalization.**
 \[t \in T \] as type
 \[t \in (\iota x.F[x]) \] as a formula.
Lambda Encoding with Comprehension

System \mathcal{G} in six rules.

$$\frac{(a : F) \in \Gamma}{\Gamma \vdash a : F}$$

$$\frac{\Gamma \vdash p : F \quad \alpha \notin \text{FV}(\Gamma)}{\Gamma \vdash \text{ug} \; \alpha \cdot p : \forall \alpha. F}$$

$$\frac{\Gamma, a : F_1 \vdash p : F_2}{\Gamma \vdash \text{discharge} \; a : F_1 \cdot p : F_1 \rightarrow F_2}$$

$$\frac{\Gamma \vdash p : F_1 \quad F_1 \simeq F_2}{\Gamma \vdash \text{cmp} \; p : F_2}$$

$$\frac{\Gamma \vdash p : \forall \alpha. F}{\Gamma \vdash \text{inst} \; p \; \text{by} \; Q : [Q/\alpha]F}$$

$$\frac{\Gamma \vdash p : F_1 \rightarrow F_2 \quad \Gamma \vdash p' : F_1}{\Gamma \vdash \text{mp} \; p \; \text{by} \; p' : F_2}$$
System \mathcal{G}: Basic Assumptions

\[
\Gamma \vdash p : F_1 \quad F_1 \simeq F_2 \\
\Gamma \vdash \text{cmp } p : F_2
\]

- Lambda conversion:
 \[(\lambda x.t)t' =_{\beta} [t'/x]t\]
- Axiom of extension:
 \[F[t_1] \simeq F[t_2] \text{ if } t_1 =_{\beta} t_2\]
- Comprehension Axiom:
 \[t \epsilon (\iota x. F) \simeq [t/x]F\]
System \mathcal{G}: Results

- Relatively easy to prove consistency.
- Subject reduction (type preservation).
- Proved Peano’s 9 axioms inside \mathcal{G}.
- Derived Strong induction within \mathcal{G}.
- Ability to reason about Scott encodings.
- Ability to reason about possibly diverging functions.
Outline

- Introduction
- An Attempt to Expressiveness through Internalization.
 A Framework for Internalizing Relations into Type Theory. Peng Fu, Aaron Stump, Jeff Vaughan. PSATTT’11
- Lambda Encodings with Dependent Type.
 Self Types for Dependently Typed Lambda Encodings. Peng Fu, Aaron Stump. RTA-TLCA 2014
- Lambda Encoding with Comprehension.
- Implementation and Future Improvements.
Gottlob: Implemented Features

- 2800 lines of Haskell code (without comments).
- Inferred formula from proof.
- Hindley-Milner polymorphic type inference for program.
- Program is translated to Scott encoded lambda term.
- Automatically derive (and proof-check) induction principle.
- User-defined proof tactic: automated generate proofs.
tactic cmpinst p s = cmp inst p by s

tactic id F = discharge a : F . a

div n m = case n < m of
 true -> zero
 false -> succ (div (n - m) m)

theorem divi. forall n m . n :: Nat -> m :: Nat ->
 Le zero m -> Le (div n m) n <+> Eq (div n m) n

theorem assoc . forall a1 a2 a3 U . a1 :: List U ->
 Eq ((a1 ++ a2) ++ a3) (a1 ++ (a2 ++ a3))
Eq \ a \ b = \forall C . \ a : : C \rightarrow b : : C

theorem trans. \forall a b c . \ Eq \ a \ b \rightarrow Eq \ b \ c \rightarrow Eq \ a \ c

proof

[m1] : Eq \ a \ b
[m2] : Eq \ b \ c
[m3] : a : : C
d1 = inst cmp m1 by C -- : a : : C \rightarrow b : : C
d2 = mp d1 by m3 -- : b : : C
d3 = inst cmp m2 by C -- : b : : C \rightarrow c : : C
d4 = mp d3 by d2 -- : c : : C
d5 = invcmp \ ug C . discharge m3 . d4 : Eq a c
d6 = \ ug a . \ ug b . \ ug c . discharge m1 . discharge m2 . d5

qed
data List A where
 nil :: List A
 cons :: A -> List A -> List A
 deriving Ind

(++) nil l = l
(++) (cons u l’) l = cons u (l’++ l)
nil = \ nil \ cons \ nil
cons = \ a2 \ a1 \ nil \ cons \ cons a2 a1
(++) = \ u1 \ u2 \ u1 u2 (\ u3 \ u4 \ cons u3 ((++) u4 u2))
(++) :: forall A . List A -> List A -> List A
List : (i -> o) -> i -> o =
iota U . iota x . forall List . nil :: List U ->
(forall x . x :: U -> forall x0 . x0 :: List U -> cons x x0 :: List U) -> x :: List U
IndList : o =
forall U . forall List0 . nil :: List0 U -> (forall x . x :: U -> forall x0 . x0 :: List0 U -> cons x x0 :: List0 U) -> forall x . x :: List U -> x :: List0 U
Gottlob: Future Improvements

- More case studies.
- Usability (find opportunity to automate proof).
- Compilation or a REPL like environment.
Thank You!

- My advisor Prof. Aaron Stump.
- My dissertation committee: Prof. Cesare Tinelli, Prof. Kasturi Varadarajan, Prof. Ted Herman, Prof. Douglas Jones.
- All the audiences.